Supporting Information

Interplay between hydrogen bonding and metal coordination in alkali metal tartrates and hydrogen tartrates

Thomas Gelbrich,^{*a} Terence L. Threlfall^b and Michael B. Hursthouse^{b,c}

^a Institute of Pharmacy, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria.
 ^b School of Chemistry, University of Southampton, Highfield, Southampton, UK SO17 1BJ, UK.
 ^cDepartment of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21588, Saudi Arabia.

thomas.gelbrich@uibk.ac.at

Contents

1.	. Analysis of structure similarity relationships					
	1.1. Ge	eneral	3			
	1.2. Su	pramolecular constructs				
	1.2.1.	Connectivity motif I: chain type A-syn	3			
	1.2.2.	Connectivity motif I: chain type A-anti	5			
	1.2.3.	Connectivity motif II				
2.	Crysta	l packing arrangement in the series <i>M</i> (D,L-HTart)				
3.	Crysta	llization experiments	13			
4.	Refere	nces				

1. Analysis of structure similarity relationships

1.1. General

Crystal packing comparisons were carried out using version 2.0 of the program $XPac^1$ and quantitative dissimilarity parameters were generated in the previously described manner.² All comparisons were based on geometrical parameters generated from all C and O atoms of the anion, whereas metal centres and water molecules were not included in these calculations.

1.2. Supramolecular constructs

1.2.1. Connectivity motif I: chain type A-syn

Figure S1. Definition of the geometries A-*syn* and A-*anti* chains of (carbonyl)O–H…O=C(carboxylate) bonded HTart⁻ ions.

Figure S2. Chain type A-syn.

Table S1. Lattice vectors (*t*) associated with the chain type A-*syn*.

Structure	CSD	Ref.	t	Length (Å)
1a			010	7.065
1b	DULSIN	3	$0\overline{1}0$	7.146
15	ZZZSSS01	4	100	7.242

Table S2. *XPac* dissimilarity parameters x for pairwise structure comparisons involving a cluster of three anions which represents the A-*syn* chain.

Structure 1	Structure 2	x	Notes
1a	1b	2.2	а
1a	15	5.2	
1b	15	5.8	b

a = The structures **1a** and **2b** have a double-stranded chain of H-bonded HTart⁻ ions in common, whose two strands are A-*syn* chains (see Figure S3and Figure 2c).

b = The structures **1b** and **15** have a layer in common which is composed of A-*syn* chains related by 2₁ symmetry (see Figure S4).

Na(D,L-HTart) · H₂O, triclinic form (1a) Na(D,L-HTart) · H₂O, monclinic form (1b) **Figure S3.** Common 1D SC (supramolecular construct)¹ of structures 1a and 1b: double-stranded chain of H-bonded HTart⁻ ions, whose two strands are A-*syn* chains (x = 2.2 for the cluster of five HTart⁻ ions representing this SC).

Na(D,L-HTart) · H₂O, monoclinic form (1b)

 $Na(L-HTart) \cdot H_2O(15)$

Figure S4. Common 2D SC of structures **1b** and **15**: layer of H-bonded HTart⁻ ions composed of A-*syn* chains (x = 8.1 for the cluster of seven HTart⁻ ions representing this SC). Corresponding lattice parameters: **1b**: 010 / 7.146 Å, 101 / 10.887 Å, 90°; **2b**: $\overline{100}$ / 7.242 Å, 001 / 10.592, 90°.

1.2.2. Connectivity motif I: chain type A-anti

Figure S5. Chain type A-anti.

11 unii.				
Structure	CSD	Ref.	t	Length (Å)
2b	XAHZIQ	5	100	7.683
5	XAHZAI	5	100	7.579
6	XAHZEM	5	100	7.626
13	YEKYIW	6	$\overline{1}00$	7.615
14	YELNIM	7	$00\overline{1}$	7.594
16	ZZZRZW01	8	001	7.604
17	KAMBIJ	9	001	7.653
18	CSHTAR10	10	001	7.692

Table S3. Lattice vectors (*t*) associated with the chain type

 A-anti.

Table S4. XPac dissimilarity parameters x for pairwise structure comparisons involving a cluster of three anions which represents the A-syn chain. The dissimilarity parameters x' refer to larger structure fragments, either the complete substructure of HTart⁻ ions (a) or to a layer of Hbonded HTart⁻ ions (b) represented by six anions (see Figure S6).

Structure 1	Structure 2	x	х'
13	14	9.8	
13	16	3.3	
13	17	3.5	
13	18	4.2	
13	5	3.4	
13	6	3.6	
13	2b	4.3	•
14	16	9.4	•
14	17	9.8	•
14	18	10.9	•
14	5	9.9	
14	6	10.5	
14	2b	11.0	
16	17	1.2	1.6 ^(a)
16	18	2.7	3.7 ^(a)
16	5	2.4	2.1 ^(b)
16	6	1.8	2.1 ^(b)
16	2b	2.5	3.6 ^(b)
17	18	1.6	2.2 ^(a)
17	5	3.0	1.7 ^(b)
17	6	1.8	1.7 ^(b)
17	2b	1.7	2.5 ^(b)
18	5	4.1	4.1 ^(b)
18	6	2.5	2.6 ^(b)
18	2b	1.4	1.4 ^(b)
5	6	1.7	1.8 ^(a)
5	2b	3.5	3.9 ^(a)
6	2b	1.8	2.3 ^(a)

_

K(L-HTart) (16)K(D,L-HTart) (5)Figure S6. Common 2D SC present in the structures 2b, 5, 6 and 16 - 18: layer of H-bonded HTart⁻ions containg A-syn chains.

1.2.3. Connectivity motif II

Figure S7. Definiton of the connectivity motifs II and III.

Structure	CSD	Ref.	t	Length (Å)	Geometry
2a			100	5.065	IIa
3			100	5.073	IIa
12	UNIROZ	11	100	5.064	IIb
14	YELNIM	7	100	5.251	IIb
19a	UNIRUF	11	100	5.044	IIb
19c		12	010	5.014	
20a	UNISIU	11	010	5.019	IIb
20b		12	$0\overline{1}0$	4.970	IIb
23	NADTRT	13	001	4.959	IIa
28	ZZZLZE01	14	010	5.014	

Table S5. Lattice vectors (t) associated with the translation of the chain motif **II** and the geometry subsets **IIa** and **IIb**.

Table S6. *XPac* dissimilarity parameters x for pairwise structure comparisons involving a cluster of three anions. This cluster represents the geometry of the H-bonded chain which is based on motif **II**. The dissimilarity parameters x' refer to the larger 2D structure fragments shown in Figure S8 and Figure 5 (a) or in Figure S9 (b).

Structure 1	Structure 2	x	x'
Geometry subset l	Ha		
2a	3	4.4	3.4 ^(a)
2a	23	3.1	
3	23	5.6	
Geometry subset l	IIb		
12	14	7.0	8.3 ^(b)
10	10-	(8.8	
12	19a	{ 10.7	•
12	20a	10.8	
12	20b	11.5	
14	10a	∫ 4.7	
14	19a	6.2	•
14	20a	6.1	
14	20b	9.3	
10a	200	(1.9	
19a	20a	5.1	•
10-	204	(5.8	
198	200	(10.9	•
20a	20b	10.5	

LiCs(D,L-Tart) · 2H2O (3)

Cs(D,L-HTart), triclinic form (2a)

Figure S8. Common 2D SC of structures **3** and **2a**: layer of H-bonded HTart⁻ ions composed of chains of the **Ha** geometry type. Corresponding lattice parameters: **3**: 100 / 5.073 Å, 001 / 10.509 Å, 81.2°; **2a**: 100 / 5.064 Å, 001 / 9.957 Å, 85.5°.

Li(L-HTart) (12)

Na(L-HTart) (14)

Figure S9. Common 2D SC of structures **12** and **14**: layer of H-bonded HTart⁻ ions composed of chains of the **IIb** geometry type. Corresponding lattice parameters: **12**: 100 / 5.064 Å, 010 / 8.330 Å, 90°; **14**: 100 / 5.064 Å, 0 $\overline{10}$ / 7.782 Å, 90°. The top and bottom diagrams show the same layer of anions without and with H atoms. Note the differences in the H positions between the two structures.

2. Crystal packing arrangement in the series M(D,L-HTart)

Figure S10. The packing of HTart⁻ (rods) and M⁺ (balls) ions in the crystal structure of the series M(D,L-HTart) with M = Cs (**2b**), K (**5**) and Rb (**6**) (view along [010]).⁵ The M^+ ions (green balls) are arranged between two layers which are composed exclusively of H-bonded D-HTart⁻ or L-HTart⁻ ions and which lie parallel to (110).

3. Crystallisation experiments

Table S7. Overview of crystalline phases obtained from mixtures of 0.2 molar aqueous solutions of alkali metal or ammonium hydroxides (*MOH*) and D,L-tartaric acid (D,L-H₂Tart) in the wells of a 96 well plate (crystallisation at room temperature). No. = number of crystallization experiment (multiple phases were identified for nos. 8, 9, 15, 16, 23, 27); Rat. = ratio MOH : D,L-H₂Tart or ratio MOH : M'OH : D,L-H₂Tart; d = number of days from the preparation of the mixture to the harvest of the crystal; SXRD / UC: phase identification on the basis of SXRD unit cell data; SXRD / FS = phase identification on the basis of a full structure determination; # = label of the phase in Table 5.

No.	М	M'	Rat.	d	SXR	D /	Phase	#	CSD refcode	Ref.
					UC	FS				
1	Li	-	1:1	15	+	$+^{c}$	Li(D,L-HTart) · H ₂ O	13	YEKYIW01	5
2	Na	-	1:1	7	+	$+^{d}$	Na(D,L-HTart) \cdot H ₂ O ^{<i>e</i>}	1a		this work
3	Κ	-	1:1	7	+	$+^{b}$	K(D,L-HTart)	5	XAHZAI	5
4	Rb	-	1:1	7	+	$+^{b}$	Rb(D,L-HTart)	6	XAHZEM	5
5	Cs	-	1:1	7	+	$+^{d}$	Cs(D,L-HTart) ^e	2a		this work
6	NH_4	-	1:1	7	+	$+^{b}$	NH ₄ (D,L-HTart)		PUXKAU01	5
7	Li	-	2:1	20	+	$+^{c}$	$Li_2(D,L-Tart) \cdot 3H_2O$	7	CEGPEK	15
8a	Na	-	2:1	30	+		$Na_2(D \text{ or } L\text{-}Tart) \cdot 2H_2O$	23	NADTRT	13
8b	Na	-	2:1	365	+	+	Na ₂ (D,L-Tart)	24	COZGED	16
9a	Κ	-	2:1	20	+		K(D,L-HTart)	5	XAHZAI	5
9b	Κ	-	2:1	365	+	+	D,L-Tart \cdot H ₂ O		TARTDL01	17
10	Rb	-	2:1	30	+		Rb ₂ (D or L-Tart)	29	ZZZVZO02	18
11	Cs	-	2:1	15	+	+	Cs ₂ (D or L-Tart)	30	SOFJOM	18
12	NH_4	-	2:1	20	+	+	NH ₄ (D,L-Tart)		ZZZJII01	19
13	Li	Na	1:1:1	365	+	$+^{c}$	$LiNa(D,L-Tart) \cdot 2H_2O$	8	CEGPIO	15
14	Li	Κ	1:1:1	20	+	$+^{c}$	$LiK(D,L-T art) \cdot H_2O$	9	JEFVIA	15
15a	Li	Rb	1:1:1	20	+	$+^{c}$	$LiRb(D,L-Tart) \cdot H_2O$	10	JEFVOG	15
15b	Li	Rb	1:1:1	300	+	+	Rb(D or L-HTart)	17	KAMBIJ	9
16a	Li	Cs	1:1:1	20	+	$+^{c}$	$LiCs(D,L-Tart) \cdot H_2O$	11	CEGPOU	15
16b	Li	Cs	1:1:1	20	+	$+^{d}$	$LiCs(D,L-Tart) \cdot 2H_2O$	3		this work
17	Li	NH_4	1:1:1	20	+	$+^{c}$	$LiNH_4(D,L-Tart) \cdot H_2O$		ZZZKDE01	15
18a	Na	Κ	1:1:1	20	+		K(D,L-HTart)	5	XAHZAI	5
18b	Na	Κ	1:1:1	20	+		$Na(D,L-HTart) \cdot H_2O$	1a		this work
19	Na	Rb	1:1:1	а						
20	Na	Cs	1:1:1	15	+	+	$Na_2CO_3 \cdot H_2O$			20
21	Na	NH_4	1:1:1	300	+	+	$Na_2CO_3 \cdot NaHCO_3 \cdot 2H_2O$			21
22	Κ	Rb	1:1:1	7	+	$+^{b}$	K _{0.5} Rb _{0.5} (D,L-HTart)		XAHZAI01	5
23b	Κ	Cs	1:1:1	20	+		K(D,L-HTart)	5	XAHZAI	5
23a	Κ	Cs	1:1:1	20	+	+	CsHCO ₃			22
24	Κ	NH_4	1:1:1	7	+	$+^{b}$	K _{0.56} (NH ₄) _{0.44} (D,L-HTart)		XAHZAI02	5
25	Rb	Cs	1:1:1	20	+	$+^{b}$	(Cs _{0.5} Rb _{0.5}) ₂ (D or L-Tart)	4		this work
26	Rb	NH_4	1:1:1	20	+	$+^{b}$	Rb _{0.61} (NH ₄) _{0.39} (D,L-HTart)		XAHZEM01	5
27a	Cs	NH_4	1:1:1	20	+	$+^{b}$	Cs(D,L-HTart) ^f	2b	XAHZIQ	5
27b	Cs	NH₄	1:1:1	20	+		NH₄(D.L-HTart)		PUXKAU01	5

^{*a*} No crystalline product was obtained.

^b Crystal structure published in the first report.⁵

^c Crystal structure published in the second report.¹⁵

^d Crystal structure contained in this report.

^e Triclinic polymorph.

^fMonoclinic polymorph.

4. References

- 1. T. Gelbrich and M. B. Hursthouse, *CrystEngComm*, 2005, 7, 324-336.
- 2. T. Gelbrich, T. L. Threlfall and M. B. Hursthouse, *CrystEngComm*, 2012, 14, 5454-5464.
- 3. M. T. M. Al-Dajani, H. H. Abdallah, N. Mohamed, C. K. Quah and H.-K. Fun, *Acta Crystallogr., Sect. E.: Struct Rep. Online*, 2010, **66**, m138-m139.
- 4. R. C. Bott, D. S. Sagatys, D. E. Lynch, G. Smith and C. H. L. Kennard, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1993, 49, 1150-1152.
- 5. T. Gelbrich, T. L. Threlfall, S. Huth, E. Seeger and M. B. Hursthouse, Z. Anorg. Allg. Chem., 2004, 630, 1451-1458.
- 6. R. C. Bott, D. S. Sagatys, G. Smith, K. A. Byriel and C. H. L. Kennard, *Polyhedron*, 1994, **13**, 3135-3141.
- R. C. Bott, G. Smith, D. S. Sagatys, D. E. Lynch, A. N. Reddy and H. L. Kennard, Z. *Kristallogr.*, 1994, 209, 803-807.
- 8. J. Buschmann and P. Luger, *Acta Crystallogr., Sect. C: Cryst. Struct. Commun.*, 1985, **41**, 206-208.
- 9. L. K. Templeton and D. H. Templeton, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1989, 45, 675-676.
- 10. L. K. Templeton and D. H. Templeton, Acta Crystallogr., Sect. A: Fundam. Crystallogr., 1978, 34, 368-371.
- 11. H. H. M. Yeung, M. Kosa, M. Parrinello, P. M. Forster and A. K. Cheetham, *Cryst. Growth Des.*, 2011, **11**, 221-230.
- 12. H. H.-M. Yeung, M. Kosa, M. Parrinello and A. K. Cheetham, *Cryst. Growth Des.*, 2013, **13**, 3705-3715.
- 13. G. K. Ambady and G. Kartha, *Acta Crystallogr., Sect. B: Struct. Sci.*, 1968, **24**, 1540-1547.
- 14. R. Boese, D. Bläser, R. Latz and M. Piennisch, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1995, **51**, 2227-2229.
- 15. T. Gelbrich, T. L. Threlfall, S. Huth and E. Seeger, *Polyhedron*, 2006, 25, 937-944.
- 16. W. Arbuckle, S. Cartner, A. R. Kennedy and C. A. Morrison, *Acta Crystallogr., Sect. E.: Struct Rep. Online*, 2009, **65**, m1232.
- 17. J.-J. Nie, D.-J. Xu, J.-Y. Wu and M. Y. Chiang, Acta Crystallogr., Sect. E.: Struct Rep. Online, 2001, 57, 0428-0429.
- 18. K. Stadnicka and Z. Brożek, Acta Crystallogr., Sect. B: Struct. Sci., 1991, 47, 484-492.
- 19. F. Miyaji, S. A. Davis, J. P. H. Charmant and S. Mann, *Chem. Mater.*, 1999, **11**, 3021-3024.
- 20. B. Dickens, F. A. Mauer and W. E. Brown, J. Res. Nat. Bur. Stand., Sect. A, 1970, 74, 319-324.
- 21. C. S. Choi and A. D. Mighell, *Acta Crystallogr., Sect. B: Struct. Sci.*, 1982, **38**, 2874-2876.
- 22. Kaduk, Z. Kristallogr., 1993, 205, 219-220.