Can Tetrazole-functionalized Ligands Realize the Role-control of Keggin-type POMs in Hybrid Framework?

Compound 1			
Cu(1)-O(2W)	1.928(9)	Cu(2)-O(3W)#1	1.946(8)
Cu(1)-O(1W)	1.927(12)	Cu(2)-N(9)	2.000(11)
Cu(1)-N(1)	1.950(9)	Cu(2)-N(13)	2.061(11)
Cu(1)-N(5)	2.002(10)	Cu(2)-O(3W)	1.944(9)
O(2W)-Cu(1)-O(1W)	88.3(5)	O(3W)#1-Cu(2)-N(9)	89.2(5)
O(2W)-Cu(1)-N(1)	92.3(4)	O(3W)-Cu(2)-N(13)	90.1(4)
O(1W)-Cu(1)-N(1)	170.0(5)	O(3W)#1-Cu(2)-N(13)	175.4(4)
O(2W)-Cu(1)-N(5)	168.2(4)	N(9)-Cu(2)-N(13)	90.9(5)
O(1W)-Cu(1)-N(5)	92.1(4)	O(3W)-Cu(2)-Cu(2)#1	46.8(2)
N(1)-Cu(1)-N(5)	89.3(4)	O(3W)#1-Cu(2)-Cu(2)#1	46.7(3)
O(3W)-Cu(2)-O(3W)#1	89.8(4)	N(9)-Cu(2)-Cu(2)#1	131.9(4)
O(3W)-Cu(2)-N(9)	178.6(4)	N(13)-Cu(2)-Cu(2)#1	134.6(3)
Compound 2			
Cu(1)-N(1)	2.013(11)	Cu(1)-N(2)#3	2.080(12)
Cu(1)-N(5)#4	1.979(12)	Cu(1)-Cl(1)	2.468(2)
N(5)#4-Cu(1)-N(1)	123.3(5)	N(5)#4-Cu(1)-Cl(1)	105.3(4)
N(5)#4-Cu(1)-N(2)#3	114.1(5)	N(1)-Cu(1)-Cl(1)	100.7(4)
N(1)-Cu(1)-N(2) #3	112.3(5)	N(2)#3-Cu(1)-Cl(1)	95.7(4)
Compound 3			
Ag(1)-N(10)	2.215(9)	Ag(2)-N(9)	2.468(9)
Ag(1)-N(1)	2.251(9)	Ag(3)-N(13)	2.216(8)
Ag(1)-N(5)	2.434(10)	Ag(3)-N(19)#1	2.257(9)
Ag(2)-N(21)	2.206(8)	Ag(3)-N(22)	2.297(9)
Ag(2)-N(6)	2.236(10)		
N(10)-Ag(1)-N(1)	160.8(3)	N(6)-Ag(2)-N(9)	122.6(3)
N(10)-Ag(1)-N(5)	120.1(3)	N(13)-Ag(3)-N(19)#1	126.9(3)
N(1)-Ag(1)-N(5)	77.7(3)	N(13)-Ag(3)-N(22)	110.0(3)
N(21)-Ag(2)-N(6)	138.4(3)	N(19)#1-Ag(3)-N(22)	120.8(3)
N(21)-Ag(2)-N(9)	98.8(3)		
Compound 4			
Ag(1)-N(1)	2.278(10)	Ag(2)-N(15)#3	2.447(10)
Ag(1)-N(9)	2.351(10)	Ag(3)-O(2W)	2.47(3)
Ag(1)-N(14)#1	2.356(10)	Ag(3)-N(2)#4	2.336(13)
Ag(2)-N(6)	2.214(9)	Ag(3)-O(1W)	2.458(19)
Ag(2)-N(10)#2	2.237(10)	Ag(3)-N(7)	2.472(10)
N(1)-Ag(1)-N(9)	130.9(3)	O(2W)-Ag(3)-N(2)#4	138.3(11)
N(1)-Ag(1)-N(14)#1	122.7(3)	O(2W)-Ag(3)-O(1W)	87.0(9)

Supporting Information

N(9)-Ag(1)-N(14)#1	103.8(3)	N(2)#4-Ag(3)-O(1W)	85.3(5)
N(6)-Ag(2)-N(10)#2	159.7(4)	O(2W)-Ag(3)-N(7)	96.7(9)
N(6)-Ag(2)-N(15)#3	103.6(3)	N(2)#4-Ag(3)-N(7)	116.7(4)
N(10)#2-Ag(2)-N(15)#3	93.2(4)	O(1W)-Ag(3)-N(7)	136.3(5)

Symmetry code: for 1: #1 -x+2, y, -z+1/2; for 2: #3 +Y, 1-X, +Z; #4 -X, 1-Y,+Z; for 3: #1 -x+3/2, y-1/2, z; for 4: #1 1-X, 1/2+Y, 3/2-Z; #2 1+X, 3/2-Y, 1/2+Z; #3 2-X, 1-Y, 2-Z; #5 2-X, 2-Y, 2-Z.

Chart S1. Tetrazole-functionalized flexible ligands bmps and bpbb used in this paper.

Figure S1. Bidentate metal-chelate coordination modes of bmps ligands with different dihedral angles of $bmps^1$ (a) and $bmps^2$ (b) in 1.

Figure S2. Trigonal-pyramidal geometry of $[Cu_4(\mu_4-Cl)]$ core in **2**. Such geometry could provide more opportunities for the internal Cu ions to coordinate with external other donor atoms rather.

Figure S3. Three kinds of coordination geometries of independent Ag^+ ions in 3.

Figure S4. Diverse coordination modes of bmps ligands in 3.

Figure S5. Through two symmetry operators (2-fold rotation and b translation), the adjacent 1D chains are arranged in an antiparallel manner and slightly shift along b axis to decrease the steric hindrance.

Figure S6. TG curves of compounds 1-4.

Figure S7. Cyclic voltammograms of the 1-CPE in $1M H_2SO_4$ aqueous solution at different scan rates (from inner to outer: 50, 80, 100, 150, 200, 250, 300, 350, 400, 450, 500 mVs⁻¹).

Figure S8. Cyclic voltammograms of the **2**-CPE in 1M H_2SO_4 aqueous solution at different scan rates (from inner to outer: 50, 100, 150, 200, 250, 300, 350, 400, 450 mVs⁻¹).

Figure S9. Cyclic voltammograms of the 4-CPE in $1M H_2SO_4$ aqueous solution at different scan rates (from inner to outer: 50, 80, 100, 150, 200, 250, 300, 350, 400, 450, 500 mVs⁻¹).

Figure S10. Cyclic voltammograms of **3**-CPE in a 1M H_2SO_4 solution containing 0.0-4.0 mM KNO₂ and a bare CPE in a 2 mM KNO₂ + 1M H_2SO_4 solution. Potentials vs SCE. Scan rate: 120 mV/s.

Figure S11. IR spectra of compounds **1-4**. Characteristic bands at 796, 875, 962, and 1061 cm⁻¹ for **1**, 813, 897, 982 and 1080 cm⁻¹ for **2**, 800, 873, 958 and 1062 cm⁻¹ for **3**,

800, 881, 964 and 1062 cm⁻¹ for 4 are attributed to v(M-O-M), v(M=O), and v(P-O), (M = W, Mo), respectively. Bands in the region of 1170-1630 cm⁻¹ are assigned to the vibrations of the flexible ligands, respectively.

Figure S12. Experimental and simulated XRPD patterns of compounds 1-4. The diffraction peaks of both simulated and experimental patterns match in the key positions, indicating the phase purities of the four compounds.