Spontaneous resolution of chiral bis-sulfoxides with asymmetric atropisomerism

*Zhiguang Xu,** *Haiyang Liu,** *Mian HR Mahmood, Yuepeng Cai, Xuan Xu and Youwen Tang*

Supporting Information

Contents

1. Experimental:	1
2. Crystallography:	3
3. ORTEP of 1s and 3s	5
4. Spectrum of 1-3s	6

1. Experimental:

Preparation of α, α' -di-*tert*- butylthio-*p*-xylene (**1s**) and α, α' -di-*tert*-butylsulfinyl-*p*-xylene (**1**):

Sodium hydroxide (99%, 2.218 g, 0.055mol) and *tert*-butyl mercaptan (5.000 g, 0.055 mol) were dissolved in anhydrous ethanol (50 ml) at 70°C before α, α' -dichloro -*p*- xylene (4.85 g, 0.027 mol) was added to the above solution, then stirred for 1 h. The solution was extracted with dichloromethane after the addition of 400 ml of water. Evaporating the dichloromethane gave **1s** (6.871 g, 0.024 mol) with a yield of 87%. Hydrogen peroxide (30%, 2.89 ml, 0.028 mol) was added dropwise to a solution of α, α' -di-*tert*- butylthio-*p*-xylene (4.000 g, 0.014 mol) in acetic acid (60 ml) on an ice bath and the solution vigorously stirred for 1 h, then 500 ml of water added. The solution was extracted with dichloromethane, and the product of **1** (3.912 g, 0.012 mol) was obtained after evaporation of CH₂Cl₂ with a yield of 85% and total yield of 74%. The crude product was purified by simple recrystallization from mixtures of n-hexane and dichloromethane.

White crystals of the bis-sulfoxides **1** were obtained by slow evaporation of a mixed solution including n-hexane and dichloromethane.

Separation of diastereomers rac-1 and meso-1:

The crystallization of **1** including *rac*-**1** and *meso*-**1** gave two types of crystals, one spiculate shaped and the other block shaped (Figure S1). The spiculate crystal and the block crystal are confirmed as *rac*-**1** and *meso*-**1** by X-ray analysis, respectively. It is easy to separate diastereomers *rac*-**1** and *meso*-**1** by picking out the spiculate crystal or the block crystal from mixed diastereomers crystals by eye or microscope.

The procedure for the preparation of **2** and **3** was the same as for compound **1**. Crystal preparation and separation of diastereomers for **2** and **3** was also the same as for **1**, which gave two types of crystals, one spiculate shaped (*rac-***2**, *rac-***3**) and the other block shaped (*meso-***2**, *meso-***3**) (see Figure S2 and S3).

By the means of NMR(see Figure S39-S41) approximate diastereomer ratios (racemate vs meso) for compounds 1, 2 and 3 are 1:1.09, 1:1.21 and 1:1.24, respectively.

Figure S1. Block shape crystals of meso-1 (left) and spiculate shape crystals of rac-1 (right)

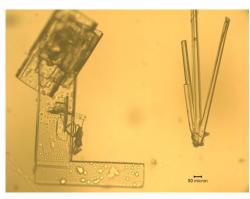


Figure S2. Block shape crystals of meso-2 (left) and spiculate shape crystals of rac-2 (right)

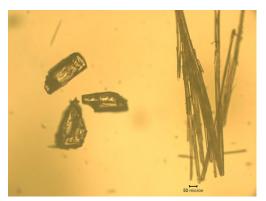


Figure S3. Block shape crystals of meso-3 (left) and spiculate shape crystals of rac-3 (right)

Figure S4. Block shape crystals of meso-3

 α, α '-di-*tert*- butylthio-*p*-xylene, **1s**:

¹H NMR (400 MHz, CDCl₃) δ : 7.268 (s, 4H, C_{AR}H), 3.736 (s, 4H, CH₂), 1.340 (s, 18H,CH₃), ¹³C NMR δ : 137.041(\underline{C}_{AR} -CH₂), 129.044(\underline{C}_{AR}^1 -CC_{AR}-CH₂), 42.842(CCH₃), 33.100(CH₂), 30.924(CH₃). MS: m/z: 282.12(19%). IR(KBr,cm⁻¹) *v*:3022.60, 2954.52, 1157.43.

(*R*,**S**)-a,a'-di-*tert*-butylsulfinyl-*p*-xylene, *meso*-**1**:

¹H NMR (400 MHz, CDCl₃) δ: 7.347 (s, 4H, C_{AR}H), 3.819 (d, 2H, J=13Hz, CH₂), 3.624 (d, 2H, J=13Hz, CH₂), 1.328 (s, 18H,CH₃), ¹³C NMRδ: 131.838, 130.516, 53.790, 52.507, 23.062. MS: m/z: 315.2(100%). IR(KBr,cm⁻¹) *v*: 3024.20, 2923.45, 1032.35, 842.44, 673.10.

(*R*,*R*)/(*S*,*S*)-α,α'-di-*tert*-butylsulfinyl-*p*-xylene, *rac*-1:

¹H NMR (400 MHz, CDCl₃) δ: 7.347 (s, 4H, C_{AR}H), 3.824 (d, 2H, J=13Hz, CH₂), 3.622 (d, 2H, J=13Hz, CH₂), 1.328 (s, 18H,CH₃), ¹³C NMR δ: 131.843, 130.503, 53.778, 52.505, 23.048. MS: m/z: 315.2(100%). IR(KBr,cm⁻¹) *v*: 3024.20, 2923.58, 1031.72, 844.36, 672.24.

(*R*,*R*)/(*S*,*S*)-a,a'-di-*tert*-butylsulfinyl-*m*-xylene, *rac*-2:

¹H NMR (400 MHz, CDCl₃) δ : 7.347-7.304 (m, 4H, C_{AR}H), 3.813 (d, 2H, J=13Hz, CH₂), 3.641 (d, 2H, J=13Hz, CH₂), 1.328 (s, 18H,CH₃)?, ¹³C NMR (400 MHz, CDCl₃) δ 132.188, 131.994, 129.693, 129.397, 53.864, 52.561, 23.122. MS: m/z: 315.2(100%). IR(KBr,cm⁻¹) *v*: 3037.71, 2968.86, 1042.97, 816.21, 708.97.

(*R*,*S*)- α , α '-di-*tert*-butylsulfinyl-*m*-xylene,*meso*-**2**:

¹H NMR (400 MHz, CDCl₃) δ: 7.383-7.297(m, 4H, C_{AR}H), 3.832 (d, 2H, J=13Hz, CH₂), 3.611 (d, 2H, J=13Hz, CH₂), 1.330 (s, 18H,CH₃), ¹³C NMR δ:132.705, 131.593, 129.873, 129.409, 53.806, 52.579, 23.080. MS: m/z: 315.2(87.9%). IR(KBr,cm⁻¹) *v*: 3049.28, 2970.73, 1036.07, 811.80, 707.09.

α, α'-di-*tert*- butylthio-o-xylene, 3s:

¹H NMR (400 MHz, CDCl₃) δ: 7.338-7.192 (4H, C_{AR}H), 3.948 (s, 4H, CH₂), 1.444 (s, 18H,CH₃), ¹³C NMR δ: 136.271, 130.738, 127.492, 42.982, 30.876, 30.588. MS: m/z: 283.3(14%).IR(KBr,cm⁻¹) *v*: 3019.17, 2957.93, 1162.62, 776.51.

(*R*,*R*)/(*S*,*S*)- α , α '-di-*tert*-butylsulfinyl-o-xylene, rac-3:

¹H NMR (400 MHz, CDCl₃) δ : 7.339 (4H, C_{AR}H), 4.675 (d, 2H, J=13Hz, CH₂), 3.605 (d, 2H, J=13Hz, CH₂), 1.389(s, 18H,CH₃), ¹³C NMR δ : 133.26, 131.69, 128.48, 53.91, 48.94, 23.02. MS: m/z: 315.2(58%). IR(KBr,cm⁻¹) *v*: 3028.06, 2954.55, 1024.71, 898.81, 764.42.

(*M*,*R*,*S*/*P*,*R*,*S*)-α,α'-di-*tert*-butylsulfinyl-*o*-xylene, (*M*,*R*,*S*)-7/(*P*,*R*,*S*)-3:

¹H NMR (400 MHz, CDCl₃) δ : 7.365-7.315 (4H, C_{AR}H), 4.284 (d, 2H, J=13Hz, CH₂), 3.769 (d, 2H, J=13Hz, CH₂), 1.386 (s, 18H,CH₃), ¹³C NMR δ : 132.406, 132.083, 128.746, 54.097, 50.216, 23.019. MS: m/z: 315.2(100%). IR(KBr,cm⁻¹) v: 3026.13, 2925.42, 1028.87, 922.22, 768.47.

2. Crystallography:

Crystal data for **1s**: $C_{16}H_{26}S_2$, M = 282.51, triclinic, a = 6.171(5) Å, b = 12.078(5) Å, c = 12.267(5) Å, $\alpha = 76.243(5)^\circ$, $\beta = 80.572(5)^\circ$, $\gamma = 77.970(5)^\circ$, V = 862.3(9) Å³, T = 293(2) K, space group *P*Error!, Z = 2, 5111 reflections measured, 3686 independent reflections ($R_{int} = 0.0127$). The final R_1 values were 0.0732 ($I > 2\sigma(I)$). The final $wR(F^2)$ values were 0.2064 ($I > 2\sigma(I)$). The final R_1 values were 0.1041 (all data). The final $wR(F^2)$ values were 0.2324 (all data). The goodness of fit on F^2 was 1.086. The asymmetric unit has two half molecules, each lying about independent inversion centers.

Crystal data for rac-1: C₁₆H₂₆O₂S₂, M = 314.51, monoclinic, a = 5.985(4) Å, b = 10.346(7) Å, c = 27.985(18) Å, a =

90.00°, β = 90.592(9)°, γ = 90.00°, V = 1733(2) Å³, T = 293(2) K, space group *P*21/*c*, Z = 4, μ (MoK α) = 0.307 mm⁻¹, 9885 reflections measured, 3899 independent reflections (R_{int} = 0.0632). The final R_1 values were 0.1103 ($I > 2\sigma(I)$). The final $wR(F^2)$ values were 0.2965 ($I > 2\sigma(I)$). The final R_1 values were 0.1749 (all data). The final $wR(F^2)$ values were 0.3307 (all data). The goodness of fit on F^2 was 1.025.

Crystal data for *meso*-1: $C_{16}H_{26}O_2S_2$, M = 314.51, triclinic, a = 5.927(5) Å, b = 6.623(5) Å, c = 11.219(5) Å, $\alpha = 80.046(5)^\circ$, $\beta = 89.205(5)^\circ$, $\gamma = 84.973(5)^\circ$, V = 432.1(5) Å³, T = 293(2) K, space group *P*Error!, Z = 1, μ (MoK α) = 0.308 mm⁻¹, 2589 reflections measured, 1861 independent reflections ($R_{int} = 0.0109$). The final R_1 values were 0.0562 ($I > 2\sigma(I)$). The final $wR(F^2)$ values were 0.1662 ($I > 2\sigma(I)$). The final R_1 values were 0.0638 (all data). The final $wR(F^2)$ values were 0.1758 (all data). The goodness of fit on F^2 was 1.034. The molecule lies about an inversion centre.

Crystal data for *rac*-**2**: $C_{16}H_{26}O_2S_2$, M = 314.51, triclinic, a = 6.3438(18) Å, b = 10.203(3) Å, c = 14.767(4) Å, $a = 108.771(4)^\circ$, $\beta = 97.042(4)^\circ$, $\gamma = 93.170(4)^\circ$, V = 893.6(4) Å³, T = 293(2) K, space group *P***Error!**, Z = 2, μ (MoK α) = 0.297 mm⁻¹, 5444 reflections measured, 3920 independent reflections ($R_{int} = 0.0223$). The final R_1 values were 0.0576 ($I > 2\sigma(I)$). The final $wR(F^2)$ values were 0.1395 ($I > 2\sigma(I)$). The final R_1 values were 0.1101 (all data). The final $wR(F^2)$ values were 0.1667 (all data). The goodness of fit on F^2 was 1.043.

Crystal data for *meso*-**2**: $C_{16}H_{26}O_2S_2$, M = 314.51, monoclinic, a = 12.418(5) Å, b = 6.541(2) Å, c = 21.609(8) Å, $a = 90.00^{\circ}$, $\beta = 93.212(6)^{\circ}$, $\gamma = 90.00^{\circ}$, V = 1752.5(11) Å³, T = 293(2) K, space group P21/c, Z = 4, μ (MoK α) = 0.303 mm⁻¹, 10160 reflections measured, 4061 independent reflections ($R_{int} = 0.0729$). The final R_1 values were 0.0841 ($I > 2\sigma(I)$). The final $wR(F^2)$ values were 0.2220 ($I > 2\sigma(I)$). The final R_1 values were 0.1968 (all data). The final $wR(F^2)$ values were 0.2771 (all data). The goodness of fit on F^2 was 0.963.

Crystal data for *cis*-**2**(with disorder of sulfinyl): $C_{16}H_{26}O_2S_2$, M = 314.49, monoclinic, a = 12.443(2) Å, b = 6.5577(11)Å, c = 21.666(3) Å, $\alpha = 90.00^{\circ}$, $\beta = 93.151(2)^{\circ}$, $\gamma = 90.00^{\circ}$, V = 1765.2(5) Å³, T = 293(2) K, space group P21/c, Z = 4, μ (MoK α) = 0.301 mm⁻¹, 8800 reflections measured, 3261 independent reflections ($R_{int} = 0.0281$). The final R_1 values were 0.0573 ($I > 2\sigma(I)$). The final $wR(F^2)$ values were 0.1502 ($I > 2\sigma(I)$). The final R_1 values were 0.0813 (all data). The final $wR(F^2)$ values were 0.1645 (all data). The goodness of fit on F^2 was 1.062.

Crystal data for *rac*-**3**: $C_{16}H_{26}O_2S_2$, M = 314.51, monoclinic, a = 11.940(7) Å, b = 19.051(10) Å, c = 9.493(5) Å, $a = 90.00^{\circ}$, $\beta = 124.504(7)^{\circ}$, $\gamma = 90.00^{\circ}$, V = 1779.5(17) Å³, T = 293(2) K, space group *C*2/*c*, Z = 4, μ (MoK α) = 0.299 mm⁻¹, 5309 reflections measured, 2060 independent reflections ($R_{int} = 0.0843$). The final R_7 values were 0.0586 ($I > 2\sigma(I)$). The final $wR(F^2)$ values were 0.1071 ($I > 2\sigma(I)$). The final R_7 values were 0.1811 (all data). The final $wR(F^2)$ values were 0.1419 (all data). The goodness of fit on F^2 was 0.926. The molecule lies about a twofold axis.

Crystal data for (*P*, *R*, *S*)-3: C₁₆H₂₆O₂S₂, *M* = 314.51, orthorhombic, *a* = 10.4014(17) Å, *b* = 11.1506(18) Å, *c* = 15.433(3) Å, α = 90.00°, β = 90.00°, γ = 90.00°, *V* = 1790.0(5) Å³, *T* = 293(2) K, space group *P*212121, *Z* = 4, μ (MoK α) = 0.297 mm⁻¹, 10956 reflections measured, 4144 independent reflections (*R*_{int} = 0.0731). The final *R*₁ values were 0.0547 (*I* > 2 σ (*I*)). The final *wR*(*F*²) values were 0.0585 (*I* > 2 σ (*I*)). The final *R*₁ values were 0.1443 (all data). The final *wR*(*F*²) values were 0.0721 (all data). The goodness of fit on *F*² was 1.041. Flack parameter = 0.20(8).

Crystal data for (*M*, *R*, *S*)-3: C₁₆H₂₆O₂S₂, *M* = 314.51, orthorhombic, *a* = 10.4267(16) Å, *b* = 15.449(2) Å, *c* = 11.1546(18) Å, α = 90.00°, β = 90.00°, γ = 90.00°, *V* = 1796.8(5) Å³, *T* = 293(2) K, space group *P*212121, *Z* = 4, μ (MoK α) = 0.296 mm⁻¹, 10429 reflections measured, 4144 independent reflections (R_{int} = 0.1054). The final R_1 values were 0.0945 (*I* > 2 σ (*I*)). The final *wR*(*F*²) values were 0.0813 (*I* > 2 σ (*I*)). The final R_1 values were 0.2124 (all data). The final *wR*(*F*²) values were 0.1018 (all data). The goodness of fit on *F*² was 1.003. Flack parameter = 0.11(11).

Crystal data for **3s**: $C_{16}H_{26}S_2$, M = 282.51, triclinic, a = 8.2584(14) Å, b = 10.6118(18) Å, c = 11.751(2) Å, $\alpha = 67.631(2)^\circ$, $\beta = 72.609(2)^\circ$, $\gamma = 69.331(2)^\circ$, V = 874.8(3) Å³, T = 293(2) K, space group *P*Error!, Z = 2, μ (MoK α) = 0.289 mm⁻¹, 5122 reflections measured, 3723 independent reflections ($R_{int} = 0.0148$). The final R_1 values were 0.0453 ($I > 2\sigma(I)$). The final $wR(F^2)$ values were 0.1133 ($I > 2\sigma(I)$). The final R_1 values were 0.0745 (all data). The

final $wR(F^2)$ values were 0.1319 (all data). The goodness of fit on F^2 was 1.009.

3. ORTEP of 1s and 3s

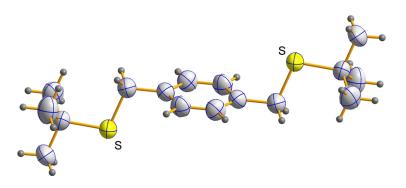


Figure S5. ORTEP of 1s with thermal ellipsoids drawn at the 50% probability level.

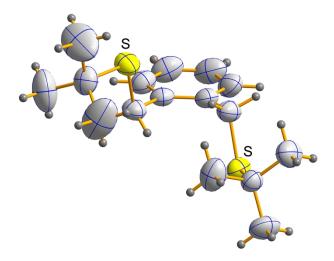


Figure S6. ORTEP of 3s with thermal ellipsoids drawn at the 50% probability level.

4. Spectrum of 1-3s

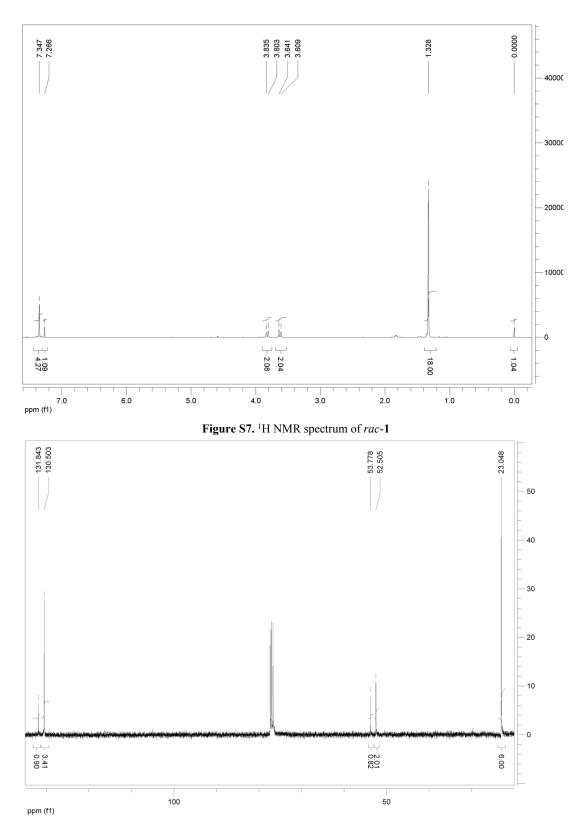
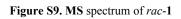



Figure S8. ¹³C NMR spectrum of *rac*-1

				11101005-6-11-10-12.d: +MS2(332.0), 3. ក្ត	8min #237
		185.0			
#		1	۱%		
1	100.0	108746	1.5		
2		3324166	44.9		
3		936272	12.7		
4		64191	0.9		
5		7398854	100.0		
e		730276	9.9		
7		149959	2.0		
8		105991	1.4		
ç		87398	1.2		
10	336.0	62645	0.8		

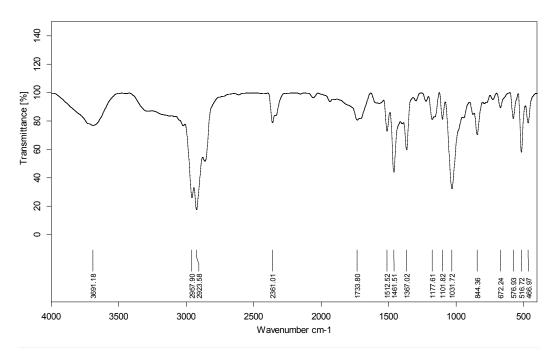


Figure S10. IR spectrum of rac-1

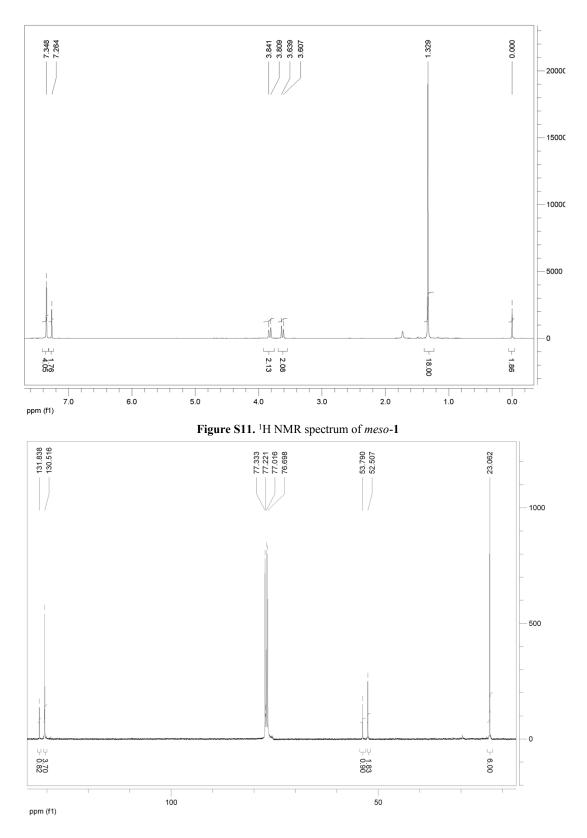
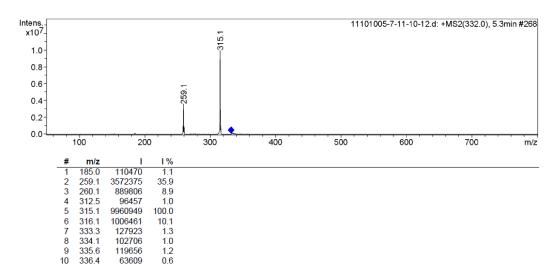



Figure S12. ¹³C NMR spectrum of *meso-*1

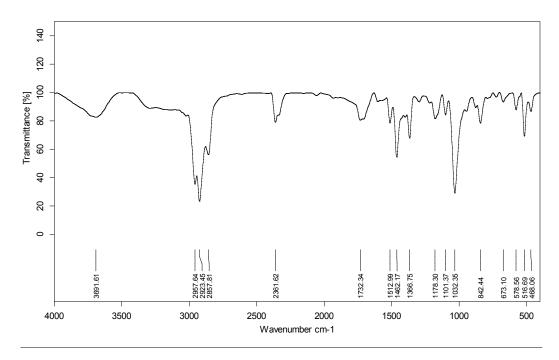


Figure S14. IR spectrum of meso-1

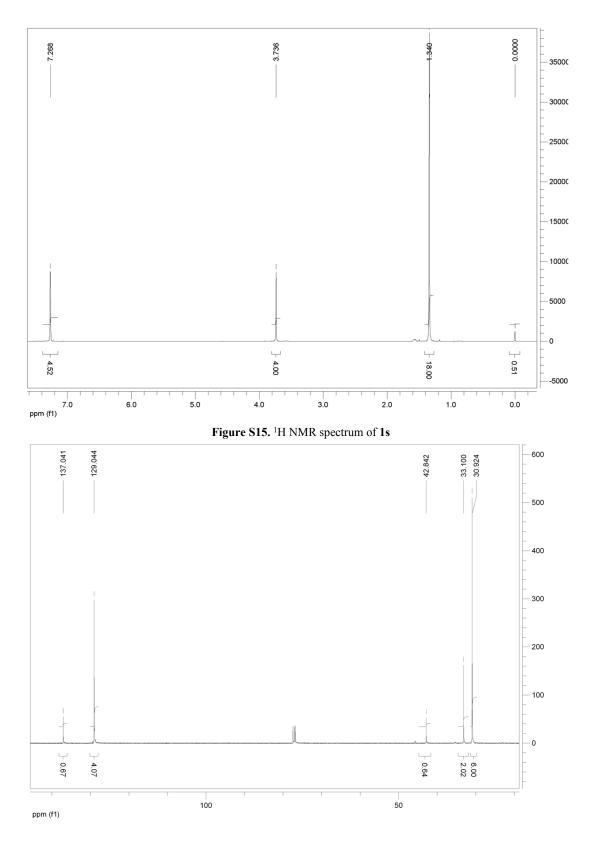


Figure S16. ¹³C NMR spectrum of 1s

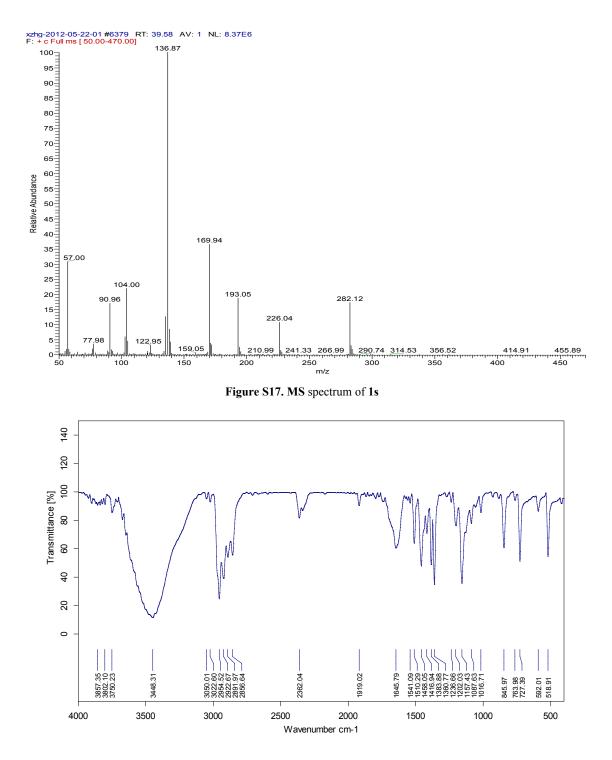


Figure S18. IR spectrum of 1s

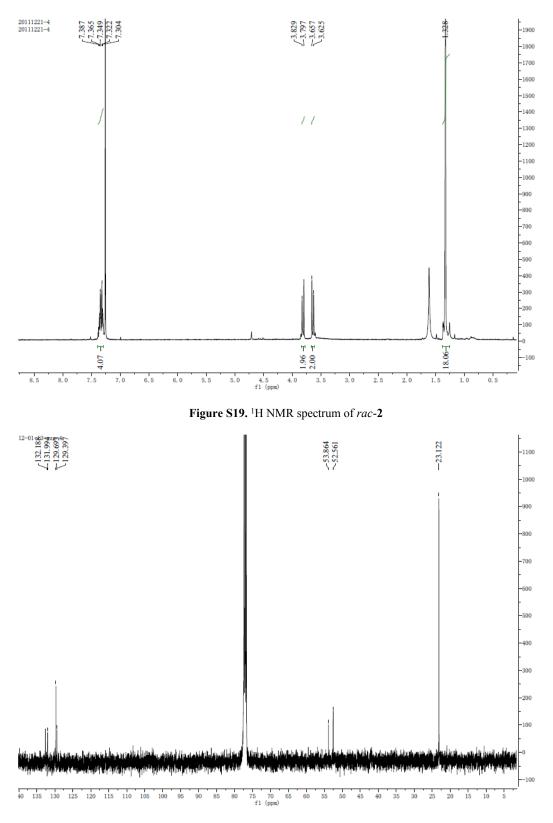
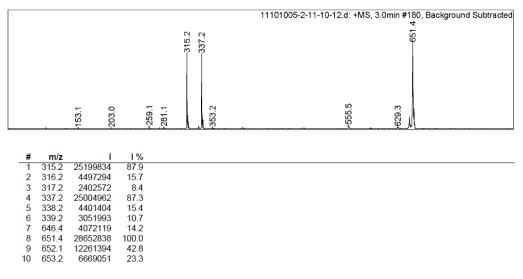
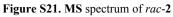




Figure S20. ¹³C NMR spectrum of *rac*-2

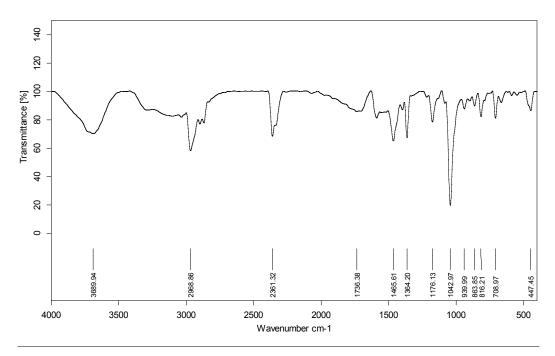


Figure S22. IR spectrum of rac-2

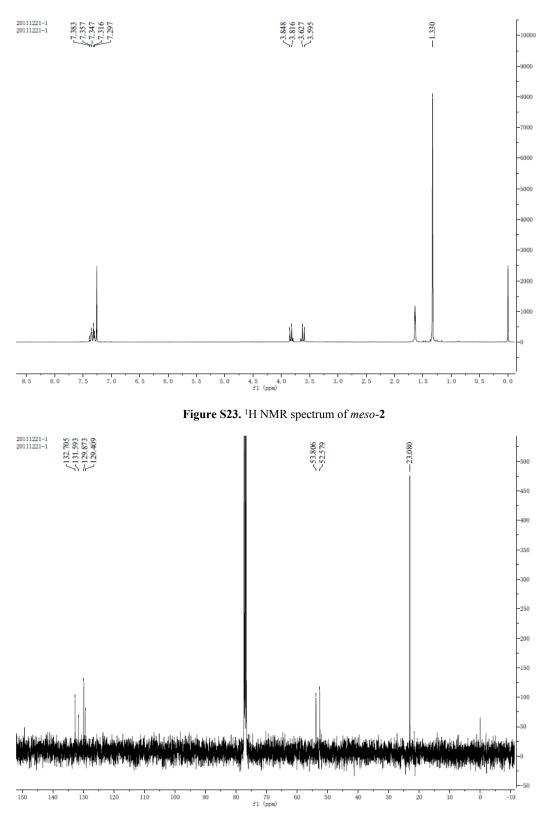
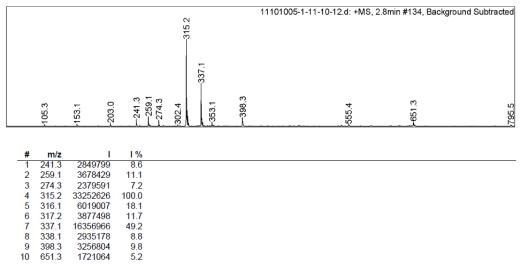
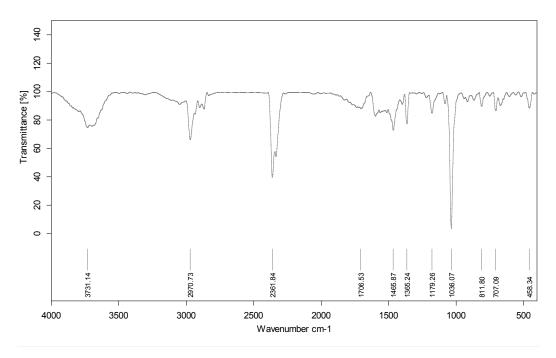
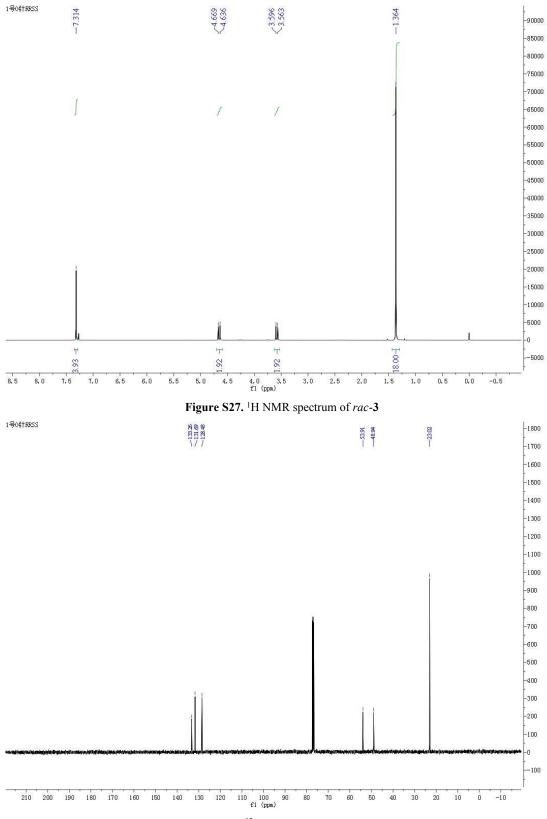
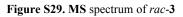



Figure S24. ¹³C NMR spectrum of *meso-*2


Figure S26. IR spectrum of meso-2

	11101005-3-11-10-12.d: +MS, 4.9min #207, Background Subtracted
	-651 1
2	
ы м м	
5	
-337	99.3 555.5 88.5

#	m/z	1	۱%
1	315.2	8986138	58.2
2	316.2	1686158	10.9
3	317.2	789808	5.1
4	337.1	2967648	19.2
5	555.5	553429	3.6
6	588.5	576898	3.7
7	651.4	15432092	100.0
8	653.1	4223690	27.4
9	654.3	688879	4.5
10	655.3	423072	2.7

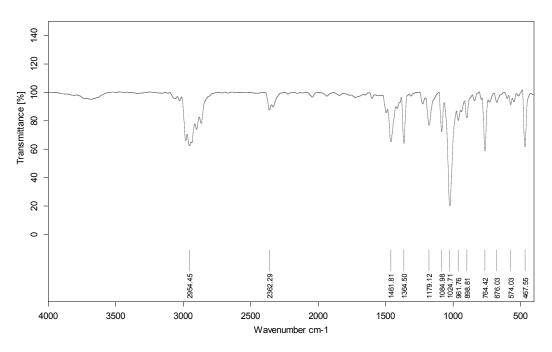
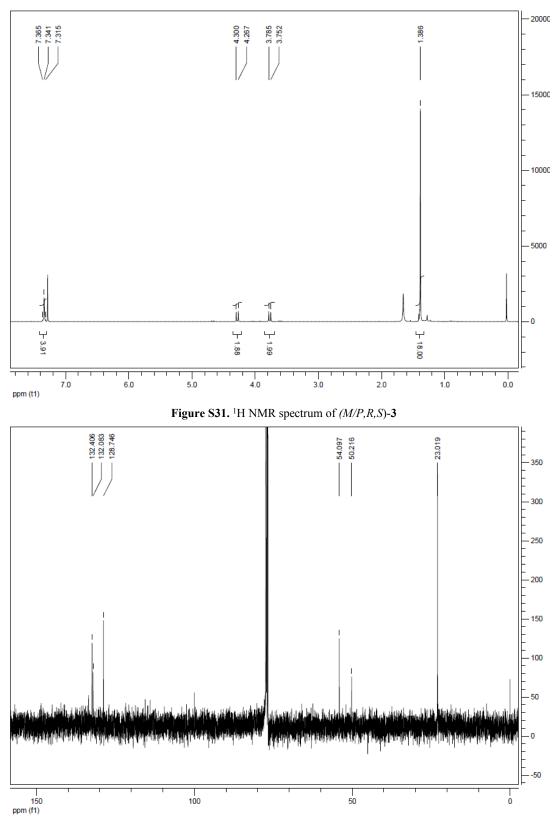
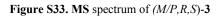




Figure S30. IR spectrum of rac-3

Figure S32. ¹³C NMR spectrum of (*M*/*P*,*R*,*S*)-**3**

315.2		315.2	11101005-4-11-10-12.d: +MS, 4.3min #188, Background Subtracted			
				247.0	-353.1	544.2
	#	m/z	1	1%		
	1	247.0	44190	1.9		
	2	315.2	2348817	100.0		
	3	316.1	459867	19.6		
	4	317.1	217648	9.3		
	5	334.3	57385	2.4		
	6	335.0	32243	1.4		
	7	337.0	186472	7.9		
	8	353.1	221248	9.4		
	9	354.2	36090	1.5		
	10	544.2	33434	1.4		

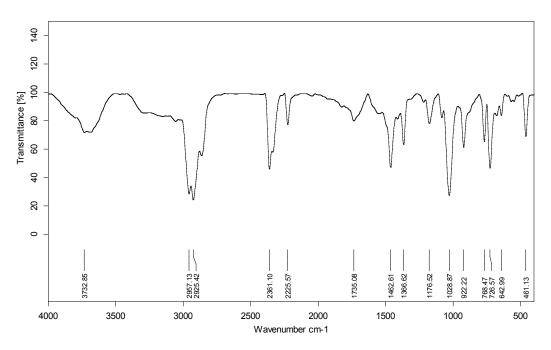
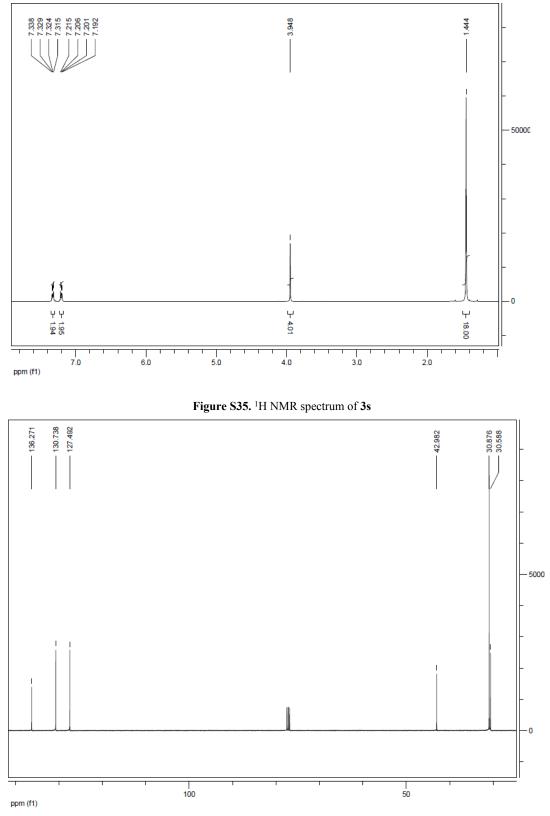
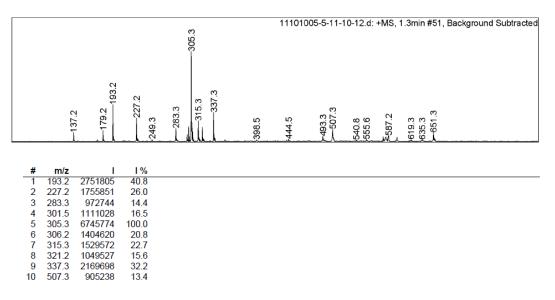




Figure S34. IR spectrum of (M/P,R,S)-3

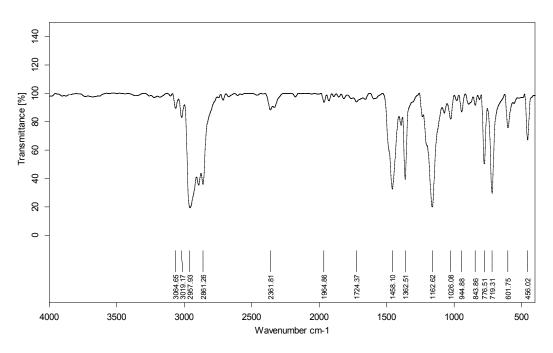


Figure S38. IR spectrum of 3s

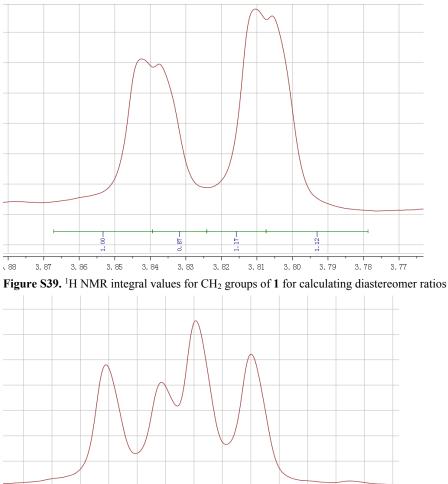


Figure S40. ¹H NMR integral values for CH₂ groups of 2 for calculating diastereomer ratios

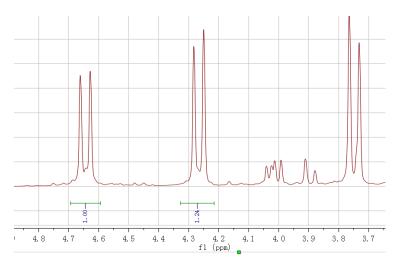


Figure S41. ¹H NMR integral values for CH₂ groups of 3 for calculating diastereomer ratios