Spontaneous resolution of chiral bis-sulfoxides with asymmetric atropisomerism

Zhiguang Xu, * Haiyang Liu, * Mian HR Mahmood, Yuepeng Cai, Xuan Xu and Youwen Tang

Supporting Information

Contents

1. Experimental: 1
2. Crystallography: 3
3. ORTEP of 1 s and 3 s 5
4. Spectrum of 1-3s 6

1. Experimental:

Abstract

Preparation of α, α^{\prime}-di-tert- butylthio- p-xylene (1s) and α, α^{\prime}-di-tert-butylsulfinyl- p-xylene (1): Sodium hydroxide ($99 \%, 2.218 \mathrm{~g}, 0.055 \mathrm{~mol}$) and tert-butyl mercaptan ($5.000 \mathrm{~g}, 0.055 \mathrm{~mol}$) were dissolved in anhydrous ethanol (50 ml) at $70^{\circ} \mathrm{C}$ before α, α^{\prime}-dichloro $-p$ - xylene ($4.85 \mathrm{~g}, 0.027 \mathrm{~mol}$) was added to the above solution, then stirred for 1 h . The solution was extracted with dichloromethane after the addition of 400 ml of water. Evaporating the dichloromethane gave $1 \mathrm{~s}(6.871 \mathrm{~g}, 0.024 \mathrm{~mol})$ with a yield of 87%. Hydrogen peroxide $(30 \%, 2.89 \mathrm{ml}$, 0.028 mol) was added dropwise to a solution of α, α^{\prime}-di-tert- butylthio-p-xylene ($4.000 \mathrm{~g}, 0.014 \mathrm{~mol}$) in acetic acid (60 ml) on an ice bath and the solution vigorously stirred for 1 h , then 500 ml of water added. The solution was extracted with dichloromethane, and the product of $1(3.912 \mathrm{~g}, 0.012 \mathrm{~mol})$ was obtained after evaporation of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with a yield of 85% and total yield of 74%. The crude product was purified by simple recrystallization from mixtures of n-hexane and dichloromethane.

White crystals of the bis-sulfoxides 1 were obtained by slow evaporation of a mixed solution including n-hexane and dichloromethane.

Separation of diastereomers rac-1 and meso-1: The crystallization of 1 including rac-1 and meso-1 gave two types of crystals, one spiculate shaped and the other block shaped (Figure S1). The spiculate crystal and the block crystal are confirmed as rac-1 and meso-1 by X-ray analysis, respectively. It is easy to separate diastereomers rac-1 and meso-1 by picking out the spiculate crystal or the block crystal from mixed diastereomers crystals by eye or microscope.

The procedure for the preparation of 2 and 3 was the same as for compound 1. Crystal preparation and separation of diastereomers for $\mathbf{2}$ and $\mathbf{3}$ was also the same as for $\mathbf{1}$, which gave two types of crystals, one spiculate shaped (rac2, rac-3) and the other block shaped (meso-2, meso-3) (see Figure S2 and S3).

By the means of NMR(see Figure S39-S41) approximate diastereomer ratios (racemate vs meso) for compounds $\mathbf{1 ,}$

2 and 3 are 1:1.09, 1:1.21 and 1:1.24, respectively.

Figure S1. Block shape crystals of meso-1 (left) and spiculate shape crystals of rac-1 (right)

Figure S2. Block shape crystals of meso-2 (left) and spiculate shape crystals of rac-2 (right)

Figure S3. Block shape crystals of meso-3 (left) and spiculate shape crystals of rac-3 (right)

Figure S4. Block shape crystals of meso-3
α, α^{\prime}-di-tert- butylthio-p-xylene, 1s:
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.268\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{C}_{\mathrm{AR}} \mathrm{H}\right), 3.736\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.340\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{CH}_{3}\right),{ }^{13} \mathrm{C}$ NMR $\delta:$ $137.041\left(\underline{C}_{A R}-\mathrm{CH}_{2}\right), 129.044\left(\underline{\mathrm{C}}^{1}{ }_{\mathrm{AR}}-\mathrm{C}^{2}{ }_{A R}-\mathrm{CH}_{2}\right), 42.842\left(\mathrm{CCH}_{3}\right), 33.100\left(\mathrm{CH}_{2}\right), 30.924\left(\mathrm{CH}_{3}\right) . \mathrm{MS}: \mathrm{m} / \mathrm{z}: 282.12(19 \%)$. $\operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) v: 3022.60,2954.52,1157.43$.
(R, S)-a, ${ }^{\prime}$ 'di-tert-butylsulfinyl-p-xylene, meso-1:
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\mathrm{\delta}: 7.347\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{C}_{\mathrm{AR}} \mathrm{H}\right), 3.819\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=13 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.624\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=13 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.328$ ($\mathrm{s}, 18 \mathrm{H}, \mathrm{CH}_{3}$), ${ }^{13} \mathrm{C}$ NMR $: 131.838,130.516,53.790,52.507,23.062 . \mathrm{MS}: \mathrm{m} / \mathrm{z}: 315.2(100 \%) . \mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$ v: 3024.20, 2923.45, 1032.35, 842.44, 673.10.
$(R, R) /(S, S)-\alpha, \alpha^{\prime}-d i-t e r t-b u t y l s u l f i n y l-p-x y l e n e, ~ r a c-1: ~$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.347\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{C}_{\mathrm{AR}} \mathrm{H}\right), 3.824\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=13 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.622\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=13 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.328$ ($\mathrm{s}, 18 \mathrm{H}, \mathrm{CH}_{3}$), ${ }^{13} \mathrm{C}$ NMR $\delta: 131.843,130.503,53.778,52.505,23.048 . \mathrm{MS}: \mathrm{m} / \mathrm{z}: 315.2(100 \%)$ IR(KBr, $\left.\mathrm{cm}^{-1}\right)$ v: 3024.20 , 2923.58, 1031.72, 844.36, 672.24.
$(R, R) /(S, S)-\alpha, \alpha^{\prime}-d i-t e r t-b u t y l s u l f i n y l-m-x y l e n e, ~ r a c-2:$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.347-7.304\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{\mathrm{AR}} \mathrm{H}\right.$), $3.813\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=13 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.641(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=13 \mathrm{~Hz}$, CH_{2}), $1.328\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{CH}_{3}\right) ?,{ }^{13} \mathrm{C} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 132.188,131.994,129.693,129.397,53.864,52.561$, 23.122. MS: m/z: 315.2(100\%). IR(KBr, $\left.\mathrm{cm}^{-1}\right) ~ v: 3037.71,2968.86,1042.97,816.21,708.97$.
(R, S)- α, α^{\prime}-di-tert-butylsulfinyl-m-xylene,meso-2:
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) ס: 7.383-7.297(m, 4H, $\mathrm{C}_{\text {AR }} \mathrm{H}$), $3.832\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=13 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$), 3.611 (d, 2H, J=13Hz, CH2), $1.330\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{CH}_{3}\right),{ }^{13} \mathrm{C}$ NMR $\delta: 132.705,131.593,129.873,129.409,53.806,52.579,23.080 . \mathrm{MS}: \mathrm{m} / \mathrm{z}: 315.2(87.9 \%)$. $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) v: 3049.28,2970.73,1036.07,811.80,707.09$.
a, a'-di-tert- butylthio-o-xylene, 3s:
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.338-7.192\left(4 \mathrm{H}, \mathrm{C}_{\mathrm{AR}} \mathrm{H}\right), 3.948\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.444\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{CH}_{3}\right),{ }^{13} \mathrm{C}$ NMR $\delta:$ 136.271, 130.738, 127.492, 42.982, 30.876, 30.588. MS: m/z: 283.3(14\%).IR(KBr, $\left.\mathrm{cm}^{-1}\right)$ v: 3019.17, 2957.93, 1162.62, 776.51.
$(R, R) /(S, S)-\alpha, a^{\prime}$-di-tert-butylsulfinyl-o-xylene, rac-3:
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.339\left(4 \mathrm{H}, \mathrm{C}_{\mathrm{AR}} \mathrm{H}\right), 4.675\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=13 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.605\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=13 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$, 1.389(s, $\left.18 \mathrm{H}, \mathrm{CH}_{3}\right),{ }^{13} \mathrm{C}$ NMR $\delta: 133.26,131.69,128.48,53.91,48.94,23.02 . \mathrm{MS}: \mathrm{m} / \mathrm{z}: 315.2(58 \%) . \mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) v: 3028.06$, 2954.55, 1024.71, 898.81, 764.42.
($M, R, S / P, R, S$)- α, α^{\prime}-di-tert-butylsulfinyl-o-xylene, (M, R, S)-7/(P,R,S)-3:
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl $)_{3}$) ס: 7.365-7.315 (4H, C $A R$ H), $4.284\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=13 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$), $3.769\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=13 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$, 1.386 (s, 18H, CH_{3}), ${ }^{13} \mathrm{C}$ NMR $\delta: 132.406,132.083$, 128.746, 54.097, 50.216, 23.019. MS: m/z: 315.2(100\%). $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) \mathrm{v}: 3026.13,2925.42,1028.87,922.22,768.47$.

2. Crystallography:

Crystal data for $1 \mathrm{~s}: \mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~S}_{2}, M=282.51$, triclinic, $a=6.171(5) \AA, b=12.078(5) \AA, c=12.267(5) \AA, \alpha=76.243(5)^{\circ}$, $\beta=80.572(5)^{\circ}, \gamma=77.970(5)^{\circ}, V=862.3(9) \AA^{3}, T=293(2) K$, space group PError!, $Z=2$, 5111 reflections measured, 3686 independent reflections $\left(R_{\text {int }}=0.0127\right)$. The final R_{1} values were $0.0732(I>2 \sigma(I))$. The final $w R\left(F^{2}\right)$ values were $0.2064(I>2 \sigma(I))$. The final R_{1} values were 0.1041 (all data). The final $w R\left(F^{2}\right)$ values were 0.2324 (all data). The goodness of fit on F^{2} was 1.086. The asymmetric unit has two half molecules, each lying about independent inversion centers.

Crystal data for rac-1: $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{~S}_{2}, M=314.51$, monoclinic, $a=5.985(4) \AA, b=10.346(7) \AA, c=27.985(18) \AA, \alpha=$
$90.00^{\circ}, \beta=90.592(9)^{\circ}, \gamma=90.00^{\circ}, V=1733(2) \AA^{3}, T=293(2) \mathrm{K}$, space group $P 21 / c, Z=4, \mu(\mathrm{MoK} \mathrm{\alpha})=0.307 \mathrm{~mm}^{-1}$, 9885 reflections measured, 3899 independent reflections ($R_{\text {int }}=0.0632$). The final R_{1} values were $0.1103(I>2 \sigma(I))$. The final $w R\left(F^{2}\right)$ values were $0.2965(I>2 \sigma(I))$. The final R_{1} values were 0.1749 (all data). The final $w R\left(F^{2}\right)$ values were 0.3307 (all data). The goodness of fit on F^{2} was 1.025.

Crystal data for meso-1: $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{~S}_{2}, M=314.51$, triclinic, $a=5.927(5) \AA, b=6.623(5) \AA, c=11.219(5) \AA, \alpha=$ $80.046(5)^{\circ}, \beta=89.205(5)^{\circ}, \gamma=84.973(5)^{\circ}, V=432.1(5) \AA^{3}, T=293(2) \mathrm{K}$, space group PError!, $Z=1, \mu(\mathrm{MoK} \mathrm{\alpha})=$ $0.308 \mathrm{~mm}^{-1}, 2589$ reflections measured, 1861 independent reflections ($R_{\text {int }}=0.0109$). The final R_{1} values were $0.0562(I>2 \sigma(I))$. The final $w R\left(F^{2}\right)$ values were $0.1662(I>2 \sigma(I))$. The final R_{1} values were 0.0638 (all data). The final $w R\left(F^{2}\right)$ values were 0.1758 (all data). The goodness of fit on F^{2} was 1.034. The molecule lies about an inversion centre.

Crystal data for rac-2: $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{~S}_{2}, M=314.51$, triclinic, $a=6.3438(18) \AA, b=10.203(3) \AA, c=14.767(4) \AA, \alpha=$ 108.771(4) ${ }^{\circ}, \beta=97.042(4)^{\circ}, \gamma=93.170(4)^{\circ}, V=893.6(4) \AA^{3}, T=293(2) \mathrm{K}$, space group PError!, $Z=2, \mu(\mathrm{MoK} \alpha)=$ $0.297 \mathrm{~mm}^{-1}, 5444$ reflections measured, 3920 independent reflections ($R_{\text {int }}=0.0223$). The final R_{1} values were $0.0576(I>2 \sigma(I))$. The final $w R\left(F^{2}\right)$ values were $0.1395(I>2 \sigma(I))$. The final R_{1} values were 0.1101 (all data). The final $w R\left(F^{2}\right)$ values were 0.1667 (all data). The goodness of fit on F^{2} was 1.043.

Crystal data for meso-2: $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{~S}_{2}, M=314.51$, monoclinic, $a=12.418$ (5) \AA, $b=6.541(2) \AA, c=21.609(8) \AA$, $\alpha=$ $90.00^{\circ}, \beta=93.212(6)^{\circ}, \gamma=90.00^{\circ}, V=1752.5(11) \AA^{3}, T=293(2) \mathrm{K}$, space group $P 21 / c, Z=4, \mu(\mathrm{MoKa})=0.303 \mathrm{~mm}^{-1}$, 10160 reflections measured, 4061 independent reflections $\left(R_{\text {int }}=0.0729\right.$). The final R_{1} values were $0.0841(I>2 \sigma(I))$. The final $w R\left(F^{2}\right)$ values were $0.2220(I>2 \sigma(I))$. The final R_{1} values were 0.1968 (all data). The final $w R\left(F^{2}\right)$ values were 0.2771 (all data). The goodness of fit on F^{2} was 0.963 .

Crystal data for cis-2(with disorder of sulfinyl): $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{~S}_{2}, M=314.49$, monoclinic, $a=12.443(2) \AA, b=6.5577$ (11) $\AA, c=21.666(3) \AA, \alpha=90.00^{\circ}, \beta=93.151(2)^{\circ}, \gamma=90.00^{\circ}, V=1765.2(5) \AA^{3}, T=293(2) \mathrm{K}$, space group $P 21 / c, Z=4$, $\mu(\mathrm{MoK} \mathrm{\alpha})=0.301 \mathrm{~mm}^{-1}, 8800$ reflections measured, 3261 independent reflections ($R_{\text {int }}=0.0281$). The final R_{1} values were $0.0573(I>2 \sigma(I))$. The final $w R\left(F^{2}\right)$ values were $0.1502(I>2 \sigma(I))$. The final R_{1} values were 0.0813 (all data). The final $w R\left(F^{2}\right)$ values were 0.1645 (all data). The goodness of fit on F^{2} was 1.062.

Crystal data for rac-3: $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{~S}_{2}, M=314.51$, monoclinic, $a=11.940(7) \AA, b=19.051$ (10) \AA, $c=9.493(5) \AA, \alpha=$ $90.00^{\circ}, \beta=124.504(7)^{\circ}, \gamma=90.00^{\circ}, V=1779.5(17) \AA^{3}, T=293(2) \mathrm{K}$, space group $C 2 / c, Z=4, \mu(\mathrm{MoK} \mathrm{\alpha})=0.299 \mathrm{~mm}^{-}$ ${ }^{1}, 5309$ reflections measured, 2060 independent reflections ($R_{\text {int }}=0.0843$). The final R_{1} values were $0.0586(I>2 \sigma(I))$. The final $w R\left(F^{2}\right)$ values were $0.1071(I>2 \sigma(I))$. The final R_{1} values were 0.1811 (all data). The final $w R\left(F^{2}\right)$ values were 0.1419 (all data). The goodness of fit on F^{2} was 0.926 . The molecule lies about a twofold axis.

Crystal data for $(\boldsymbol{P}, \boldsymbol{R}, \boldsymbol{S})-3: \mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{~S}_{2}, M=314.51$, orthorhombic, $a=10.4014(17) \AA, b=11.1506(18) \AA, c=$ $15.433(3) \AA, \alpha=90.00^{\circ}, \beta=90.00^{\circ}, \gamma=90.00^{\circ}, V=1790.0(5) \AA^{3}, T=293(2) \mathrm{K}$, space group $P 212121, Z=4$, $\mu(\mathrm{MoKa})=0.297 \mathrm{~mm}^{-1}, 10956$ reflections measured, 4144 independent reflections ($R_{\text {int }}=0.0731$). The final R_{1} values were $0.0547(I>2 \sigma(I))$. The final $w R\left(F^{2}\right)$ values were $0.0585(I>2 \sigma(I))$. The final R_{1} values were 0.1443 (all data). The final $w R\left(F^{2}\right)$ values were 0.0721 (all data). The goodness of fit on F^{2} was 1.041. Flack parameter $=0.20(8)$.

Crystal data for $(\boldsymbol{M}, \boldsymbol{R}, \boldsymbol{S})-3: \mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{~S}_{2}, M=314.51$, orthorhombic, $a=10.4267(16) \AA, b=15.449(2) \AA, c=$ $11.1546(18) \AA, \alpha=90.00^{\circ}, \beta=90.00^{\circ}, \gamma=90.00^{\circ}, V=1796.8(5) \AA^{3}, T=293(2) \mathrm{K}$, space group $P 212121, Z=4$, $\mu(\mathrm{MoKa})=0.296 \mathrm{~mm}^{-1}, 10429$ reflections measured, 4144 independent reflections ($R_{\text {int }}=0.1054$). The final R_{1} values were $0.0945(I>2 \sigma(I))$. The final $w R\left(F^{2}\right)$ values were $0.0813(I>2 \sigma(I))$. The final R_{1} values were 0.2124 (all data). The final $w R\left(F^{2}\right)$ values were 0.1018 (all data). The goodness of fit on F^{2} was 1.003. Flack parameter $=0.11(11)$.

Crystal data for $3 \mathrm{~s}: \mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~S}_{2}, M=282.51$, triclinic, $a=8.2584(14) \AA, b=10.6118(18) \AA, c=11.751(2) \AA, \alpha=$ $67.631(2)^{\circ}, \beta=72.609(2)^{\circ}, \gamma=69.331(2)^{\circ}, V=874.8(3) \AA^{3}, T=293(2) \mathrm{K}$, space group PError!, $Z=2, \mu(\mathrm{MoKa})=$ $0.289 \mathrm{~mm}^{-1}, 5122$ reflections measured, 3723 independent reflections ($R_{\text {int }}=0.0148$). The final R_{1} values were $0.0453(I>2 \sigma(I))$. The final $w R\left(F^{2}\right)$ values were $0.1133(I>2 \sigma(I))$. The final R_{1} values were 0.0745 (all data). The
final $w R\left(F^{2}\right)$ values were 0.1319 (all data). The goodness of fit on F^{2} was 1.009.

3. ORTEP of 1 s and 3 s

Figure S5. ORTEP of 1s with thermal ellipsoids drawn at the 50% probability level.

Figure S6. ORTEP of 3s with thermal ellipsoids drawn at the 50% probability level.

4. Spectrum of 1-3s

Figure S7. ${ }^{1} \mathrm{H}$ NMR spectrum of $r a c-1$

Figure S8. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathrm{rac}-\mathbf{1}$

$\#$	\mathbf{m} / \mathbf{z}	l	$\mathrm{l} \%$
1	185.0	108746	1.5
2	259.1	3324166	44.9
3	260.1	936272	12.7
4	312.5	64191	0.9
5	315.1	7398854	100.0
6	316.0	730276	9.9
7	333.1	149959	2.0
8	334.1	105991	1.4
9	334.7	87398	1.2
10	336.0	62645	0.8

Figure S9. MS spectrum of rac-1

Figure S10. IR spectrum of rac-1

Figure S11. ${ }^{1} \mathrm{H}$ NMR spectrum of meso-1

Figure S12. ${ }^{13} \mathrm{C}$ NMR spectrum of meso- $\mathbf{1}$

Figure S13. MS spectrum of meso-1

Figure S14. IR spectrum of meso-1

Figure S15. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 s}$

Figure S16. ${ }^{13} \mathrm{C}$ NMR spectrum of 1 s
xzhg-2012-05-22-01 \#6379 RT: 39.58 AV: 1 NL: 8.37E6
xzhg-2012-05-22-01 \#6379

Figure S17. MS spectrum of 1s

Figure S18. IR spectrum of 1 s

Figure S19. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{rac}-2$

Figure S20. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathrm{rac-2}$

$\#$	\mathbf{m} / \mathbf{z}	\mathbf{I}	$\mathbf{1} \%$
1	315.2	25199834	87.9
2	316.2	4497294	15.7
3	317.2	2402572	8.4
4	337.2	25004962	87.3
5	338.2	4401404	15.4
6	339.2	3051993	10.7
7	646.4	4072119	14.2
8	651.4	28652838	100.0
9	652.1	12261394	42.8
10	653.2	6669051	23.3

Figure S21. MS spectrum of $\mathrm{rac}-\mathbf{2}$

Figure S22. IR spectrum of rac-2

Figure S23. ${ }^{1} \mathrm{H}$ NMR spectrum of meso-2

Figure S24. ${ }^{13} \mathrm{C}$ NMR spectrum of meso-2

\#	\mathbf{m} / \mathbf{z}	\mathbf{I}	$\mathbf{l} \%$
1	241.3	2849799	8.6
2	259.1	3678429	11.1
3	274.3	2379591	7.2
4	315.2	33252626	100.0
5	316.1	6019007	18.1
6	317.2	3877498	11.7
7	337.1	16356966	49.2
8	338.1	2935178	8.8
9	398.3	3256804	9.8
10	651.3	1721064	5.2

Figure S25. MS spectrum of meso-2

Figure S26. IR spectrum of meso-2

Figure S27. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{rac}-3$

Figure S28. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathrm{rac}-3$

\#	\mathbf{m} / \mathbf{z}	\mathbf{I}	$\mathbf{I} \%$
1	315.2	8986138	58.2
2	316.2	1686158	10.9
3	317.2	789808	5.1
4	337.1	2967648	19.2
5	555.5	553429	3.6
6	588.5	576898	3.7
7	651.4	15432092	100.0
8	653.1	4223690	27.4
9	654.3	688879	4.5
10	655.3	423072	2.7

Figure S29. MS spectrum of rac-3

Figure S30. IR spectrum of rac-3

Figure S31. ${ }^{1} \mathrm{H}$ NMR spectrum of $(M / P, R, S)-\mathbf{3}$

Figure S32. ${ }^{13} \mathrm{C}$ NMR spectrum of $(M / P, R, S)$ - $\mathbf{3}$

$\#$	\mathbf{m} / \mathbf{z}	I	$\mathbf{1} \%$
1	247.0	44190	1.9
2	315.2	2348817	100.0
3	316.1	459867	19.6
4	317.1	217648	9.3
5	334.3	57385	2.4
6	335.0	32243	1.4
7	337.0	186472	7.9
8	353.1	221248	9.4
9	354.2	36090	1.5
10	544.2	33434	1.4

Figure S33. MS spectrum of $(M / P, R, S)$ - $\mathbf{3}$

Figure S34. IR spectrum of $(M / P, R, S)$ - $\mathbf{3}$

Figure S35. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 s}$

Figure S36. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 s}$

$\#$	\mathbf{m} / \mathbf{z}	\mathbf{I}	$\mathrm{I} \%$
1	193.2	2751805	40.8
2	227.2	1755851	26.0
3	283.3	972744	14.4
4	301.5	1111028	16.5
5	305.3	6745774	100.0
6	306.2	1404620	20.8
7	315.3	1529572	22.7
8	321.2	1049527	15.6
9	337.3	2169698	32.2
10	507.3	905238	13.4

Figure S37. MS spectrum of 3s

Figure S38. IR spectrum of 3s

Figure S39. ${ }^{1} \mathrm{H}$ NMR integral values for CH_{2} groups of $\mathbf{1}$ for calculating diastereomer ratios

Figure S40. ${ }^{1} \mathrm{H}$ NMR integral values for CH_{2} groups of $\mathbf{2}$ for calculating diastereomer ratios

Figure S41. ${ }^{1} \mathrm{H}$ NMR integral values for CH_{2} groups of $\mathbf{3}$ for calculating diastereomer ratios

