SUPPORTING INFORMATION

A combined experimental-computational study of benzoxaborole crystal structures

S. Sene, D. Berthomieu, B. Donnadieu, S. Richeter, J. Vezzani, D. Granier, S. Bégu, H. Mutin, C. Gervais, and D. Laurencin

Page	Content						
S2	Details on the Le Bail refinement procedure of the XRD powder patterns.						
\$3	Figure S1: XRD powder patterns of AN2690 and BBzx and Le Bail refinements.						
54	Figure S2: Solution NMR characterizations of AN2690:	 ¹H, ¹³C, ¹⁹F and ¹¹B NMR spectra; ¹D ¹H-¹³C HMQC spectrum. 					
S5	Table S1: Peak assignments and J couplings on the ¹ H, ¹³ C	and ¹⁹ F NMR spectra of AN2690.					
<i>S6</i>	Figure S3: Solution NMR characterizations of BBzx:	 ¹H, ¹³C, and ¹¹B NMR spectra; ¹H-¹³C HMQC spectrum. 					
S7	Table S2: Peak assignments and J couplings on the ¹ H and	¹³ C NMR spectra of BBzx.					
S8	Figure S4: TGA characterizations of AN2690 and BBzx.						
<i>\$9</i>	Figure S5: Comparison of the XRD powder patterns of AN2690 and BBzx, to those simulated from previously published crystal structures of these two molecules.						
S10	Table S3: Comparison of the single-crystal X-ray data of the	ne different structures of AN2690 and BBzx.					
S11	Figure S6: Comparison of the single crystal structures of A	N2690.					
S12	Figure S7: Hirshfeld surface fingerprint plots of the two sin	ngle crystal structures of AN2690.					
<i>S13</i>	Figure S8: Comparison of the experimental structures of t	he two polymorphs of BBzx.					
514	Table S4: Comparison of geometrical parameters in a monomous and in the two crystal structures reported so far.	plecular dimer of AN2690 after DFT relaxation,					
S15	Table S5: PED analysis of the vibrational modes calculated	for a dimer model of AN2690.					
S17	Table S6: List of vibration frequencies calculated for a dim	er model of BBzx.					
S18	Figure S9: Comparison between experimental and calcula	ted ¹ H NMR spectra of AN2690 and BBzx.					
S19	Figure S10: Comparison between experimental and calcul	ated ¹³ C NMR spectra of AN2690 and BBzx.					
520	Table S7: GIPAW-calculated 1 H, 13 C, 11 B, 19 F and 17 O NM the AN2690 structure.	R parameters for different periodic models of					
521	Table S8: GIPAW-calculated ¹ H, ¹³ C, ¹¹ B, and ¹⁷ O NMR paBBzx structure.	arameters for different periodic models of the					
S22	Table S9: Comparison of the geometrical parameters in elevation, and in the two crystal structures reported so fa	different periodic models of AN2690 after DFT ar.					

Details on the Le Bail refinement procedure of the XRD powder patterns of AN2690 and BBzx

The XRD data of both micro-crystalline phases were recorded in the Debye-Scherrer configuration and capillary configuration on a XPERTPro Panalytical two circles powder diffractometer equipped with a monochromatized Cu K α_1 radiation. The indexation process was carried out using the Dicvol subroutine integrated in the Fullprof suite software,¹ a whole-pattern decomposition fitting mode known as the Le Bail fitting² with a constant scale factor and using a Pearson pseudo-Voigt function profil for the refinement. The zero point of detector and lattice constants were refined in the first round, then peak shape and full-width-at-half-minimum parameters (U, V, W and X) were added; the background parameters, asymmetry parameters (Asy1, Asy2, Asy3, Asy4) were also refined in the last cycles of refinements. Finally, instrumental or physical aberration corrections were added to the least squares refinement by using parameters sycos and sysin. Results of refinement are depicted in the table below, and in Figure S1 (ESI).

Lattice constants and Le Bail refinement results from X-ray diffraction (with λ = 1.5406 Å) for 5-fluoro-1,3-dihydro-1-hydroxy-2,1-benzoxaborole (AN2690) and 1,3-dihydro-1-hydroxy-2,1-benzoxaborole (BBzx).

	AN2690	BBzx
Temperature (K)	293	293
Wavelength (Å)	1.5406	1.5406
Space group	P -1	P -1
<i>a</i> (Å)	4.0289(14)	4.4567(19)
<i>b</i> (Å)	6.321(2)	6.155(3)
<i>c</i> (Å)	14.059(6)	25.028(10)
α (°)	97.068(3)	96.345(4)
β (°)	91.032(3)	90.783(3)
γ (°)	100.601(3)	102.434(4)
V (Å ³)	348.95(2)	665.8(5)
Z	2	4
Number of independent reflections	162	146
Number of global refined parameters	1	1
Number of profile refined parameters	9	9
Rp (%)	13.9	10.5
Rwp (%)	14.2	11.9
Rexp (%)	4.51	4.04
Chie ²	8.62	7.81

¹ Fullprof 2000 version July 2001, Juan Rodrigues-Carvajal, Laboratoire Leon Brillouin (CEA-CNRS), 91191 Gif sur Yvette Cedex, France.

² A. LeBail, H. Duroy and J.L. Fourquet, *Mat. Res. Bull.* 1988, **23**, 447.

Figure S1. Le Bail refinements of the XRD powder patterns (recorded in capillary mode) for AN2690 and BBzx. Experimental XRD patterns are in red, and calculated ones (Le Bail method) in black. The fitting difference curve is in blue, and the Bragg peak positions in green.

a/ AN2690

b/ BBzx

Figure S2. ¹H, ¹³C, ¹⁹F and ¹¹B NMR spectra, and 2D ¹H-¹³C HMQC spectrum of AN2690, recorded in DMSO-d⁶.

¹ H NMR			¹³ C NMR				¹⁹ F NMR			
н	δ (ppm)	Multiplicity J coupling	С	δ (ppm)	Multiplicity J coupling	F	δ (ppm)	Multiplicity J coupling		
-	-	-	C ₁	-	-	-	-	-		
H ₂	9.25	S	C ₂	156.6	d ³ J _{CF} = 8.9 Hz	-	-	-		
H ₃	7.25	dd ³ J _{HF} = 9.7 Hz ⁴ J _{HH} = 3.2 Hz	C ₃	108.5	d ² J _{CF} = 22.1 Hz	-	-	-		
-	-	-	C ₄	164.2	d ¹ J _{CF} = 246.4 Hz	F1	-110.3	dt ³ J _{HF} ~9.6 Hz ⁴ J _{HF} ~ 5.9 Hz		
H₅	7.16	~dt ³ J _{HF,HH} ~ 8.5 Hz ⁴ J _{HH} = 3.2 Hz	C ₅	114.4	d ² J _{CF} = 22.0 Hz	-	-	-		
H ₆	7.75	dd ³ J _{HH} = 8.7 Hz ⁴ J _{HF} = 5.3 Hz	C ₆	132.6	d ³ J _{CF} = 9.3 Hz	-	-	-		
H ₇	4.97	S	C ₇	69.5	d ⁴ J _{CF} = 3.1 Hz	-	-	-		

Table S1. Peak assignments and J couplings measured on the 1 H, 13 C and 19 F NMR spectra of AN2690, shown in Figure S2 (recorded in DMSO-d⁶).

¹³C NMR ¹H NMR H_2 H_4 H_5 H_3 H_7 C7 C_{2,4} C₅ H₁ C_6 160 170 150 140 100 90 80 70 7 ¹H chemical shift (ppm) 130 120 110 60 9 10 5 8 6 ¹³C chemical shift (ppm) ¹H-¹³C HMQC H₂ H₃ H_4 Qн₂ 120 C H₁ \bigcirc 브 C_5 (c_1) **130 125** ¹³C chemical shift (ppm) \bigcirc C₃ O H₄ Ј Н_{7В} \bigcirc \bigcirc C_{2,4} 135 7.8 7.7 7.6 7.5 7.4 7.2 ¹H chemical shift (ppm) ¹¹B NMR 40 30 ¹¹B chemical shift (ppm) 20 10 50

Figure S3. ¹H, ¹³C and ¹¹B NMR spectra, and 2D ¹H-¹³C HMQC spectrum of BBzx, recorded in DMSO-d⁶. (except for the ¹¹B NMR spectrum, which was recorded in D_2O)

Table S2. Peak assignments and J couplings measured on the ¹H and ¹³C NMR spectra of BBzx, shown in Figure S3 (recorded in DMSO-d⁶).

Ή				¹³ C	
н	δ (ppm)	Multiplicity J _{HH} coupling	С	δ (ppm)	
H1	9.15	S	C ₁	-	
H₂	7.73	d ³ J _{HH} = 7.3 Hz	C ₂	130.5	
H₃	7.33	t ³ J _{HH} = 7.3 Hz	C ₃	126.8	
H4	7.46	t ³ J _{HH} = 7.4 Hz	C ₄	130.5	H ₅ H _{7A}
H₅	7.39	d ³ J _{HH} = 7.6 Hz	C ₅	121.3	
	-	-	C ₆	153.9	
H ₇	4.98	S	C ₇	69.9	

Figure S4. TGA characterizations of BBzx and AN2690.

In the TGA conditions used here, the degradation starts at ~75 °C for BBzx and ~90 °C for AN2690. An inter-molecular dehydration most probably occurs in the initial stages of the weight loss. It should be noted that information on the thermal stability of BBzx and AN2690 is important, in order to avoid any degradation of these molecules during other syntheses of derived molecules or materials.

Figure S5. Comparison of the XRD powder patterns of AN2690 and BBzx, to those simulated for previously published crystal structures of these two molecules.

[1] Structure recorded as part of this work (CCDC 986106).

[2] I. D. Madura, A. Adamczyk-Wozniak, M. Jakubczyk and A. Sporzynski, Acta Cryst. 2011, 67, 414.

[3] V. V. Zhdankin, P. J. Persichini III, L. Zhang, S. Fix and P. Kiprof, *Tetrahedron Lett.* 1999, **40**, 6705. (polymorph characterized in this manuscript – referred to as P(1)).

[4] A. Adamczyk-Wozniak, M. K. Cyranski, M. Jakubczyk, P. Klimentowska, A. Koll, J. Kołodziejczak, G. Pojmaj, A. Zubrowska, G. Z. Zukowska and A. Sporzynski, *J. Phys. Chem. A*, 2010, **114**, 2324 (polymorph referred to as P(2)).

Phase	AN2	2690	BBzx			
	(C ₇ H ₆	BO ₂ F)	(C ₇ H ₇ BO ₂)			
Reference	[1]	[2]	[3,4]	[5]		
CCDC	986106	811360	LOQQEN	744739		
(or CSD)				LOQQEN01		
Crystal System	Triclinic	Triclinic	Triclinic	Monoclinic		
Space Group	<i>P</i> -1	<i>P</i> -1	<i>P</i> -1	P2 ₁		
a (Å)	4.0277(2)	3.8799(3)	4.5250(6)	4.5355(7)		
b (Å)	6.3237(6)	6.3077(5)	6.1615(7)	24.292(4)		
<i>c</i> (Å)	14.0649(14)	14.0735(12)	24.640(3)	6.1436(5)		
α (°)	97.11(1)	98.07(1)	96.226(2)	90		
6 (°)	91.01(1)	91.56(1)	90.799(2)	102.73(1)		
γ (°)	100.63(1)	100.47(1)	102.652(2)	90		
V (Å ³)	349.07(5)	334.84(5)	665.84(38)	660.23(135)		
Z	2	2	4	4		
Density (g/cm ³)	1.445	1.507	1.336	1.347		
Measurement Temperature (K)	293	100	173	100		

Table S3. Comparison of the *single-crystal* X-ray data of structures of AN2690 and BBzx.

[1] This work.

[2] I. D. Madura, A. Adamczyk-Wozniak, M. Jakubczyk and A. Sporzynski, Acta Cryst. 2011, 67, 414.

[3] V. V. Zhdankin, P. J. Persichini III, L. Zhang, S. Fix and P. Kiprof, *Tetrahedron Lett.* 1999, **40**, 6705. (polymorph referred to as P(1) – corresponds to the one characterized in this manuscript).

[4] For the BBzx phase we studied here, the lattice parameters determined after Le Bail refinement of the XRD powder pattern (recorded at room temperature – see Figure S1) were the following: a = 4.4567(19) Å, b = 6.155(3) Å, c = 25.028(10) Å, $\alpha = 96.345(4)^\circ$, $\beta = 90.783(3)^\circ$, $\gamma = 102.434(4)^\circ$.

[5] A. Adamczyk-Wozniak, M. K. Cyranski, M. Jakubczyk, P. Klimentowska, A. Koll, J. Kołodziejczak, G. Pojmaj, A. Zubrowska, G. Z. Zukowska and A. Sporzynski, *J. Phys. Chem. A*, 2010, **114**, 2324. (polymorph referred to as P(2)).

Figure S6. Comparison of the single-crystal structures of AN2690.

Figure S7. Hirshfeld surface fingerprint plots³ of the two single crystal structures of AN2690.

Previous studies in the literature have shown that these fingerprint plots can be used as a tool to discuss cases of polymorphism in molecular crystals.

³ The « CrystalExplorer » software was used: CrystalExplorer (Version 3.1), S. K. Wolff, D. J. Grimwood, J. J. McKinnon, M. J. Turner, D. Jayatilaka and M. A. Spackman, University of Western Australia, 2012.

⁴ Relaxations in Crystal09 (B3LYP-D*; BS-A – see experimental section).

Figure S8. Comparison of the single-crystal structures of BBzx.

Table S4. Comparison of geometrical parameters in a molecular dimer of AN2690 (after DFT-relaxation), and in the two crystal structures reported so far.

	Optimized geometry	Expt	Expt						
	(Gaussian 09)	(this work – CCDC 986106)	(Acta Cryst. 2011, 67 , 414)						
Distances (in Å)									
B1-O1	1.403	1.388	1.392						
B1-O2	1.343	1.344	1.348						
01-C7	1.443	1.446	1.447						
C7-C2	1.509	1.500	1.503						
C2-C1	1.402	1.393	1.395						
C1-B1	1.553	1.547	1.552						
C1-C6	1.398	1.397	1.401						
C6-C5	1.392	1.378	1.386						
C5-C4	1.392	1.377	1.383						
C4-F1	1.355	1.356	1.356						
C4-C3	1.387	1.372	1.382						
C3-C2	1.392	1.382	1.390						
O1(H2)-O2	2.790	2.774	2.761						
	Ang	les (in °)							
01-B1-O2	122.7	121.6	121.5						
O1-B1-C1	107.5	108.2	108.2						
B1-C1-C2	105.7	105.2	104.9						
C1-C2-C7	110.3	110.6	110.9						
C2-C7-O1	105.6	105.5	105.5						
B1-O1(H2)-O2	124.5	126.2	126.4						

Table S	S5: \	/ibration	frequenci	es (r	related	intens	ities),	and	PED	analysis	s of a	dimer	of	AN2690,	after
geome	try c	ptimizat	ion (using	the F	B3LYP/6	5-311+	+G(d,	p) me	thod	l, as imp	leme	nted in	Ga	ussian09)).

Calculated Frequency	Calculated Intensity	Assignment and PED>10%	
(cm ⁻¹)		(21)	
3560	3155	v(OH) sym	100%
3525	0	v(OH) antisym	100%
3201	0	V(CH) sym	90%
3201	8	v(CH) antisym	90%
3187	0		99%
3187	10		99%
3177	10	v(CH) aniisym	89%
3177	1	v(CH) sym	07%
3073	23		97%
3073	0	v(CH)	97%
3038	55	v(CH)	99%
1650	0		36%
1650	281	V(CC)	36%
1630	88	V(CC)	30%
1620	0	V(CC)	30%
1523	183	v(BO) antisym	22%
1518	0		<10%
1502	53		1/0/0
1302	55	$\delta(\text{HCH})$ exocyc scissor	44%
1500	0	δ(HCH) exocyc rock	47%
1000	ů	$\delta(\text{HCH})$ exoccyc scissor	47%
1468	1010	v(BO) antisym	39%
1464	0	v(BO) svm	43%
1453	0	v(CC) sym	24%
1452	31	v(CC) antisym	24%
1390	187	δ(OCH) exocvc wag	46%
1384	0	δ (OCH) exocyc wag	49%
1334	0	v(CC) sym	18%
1334	7	v(CC) antisym	18%
1292	127	δ (CCH) exocyc antisym	20%
1288	0	δ(CCH) exocyc sym	20%
1264	223	v(CF) antisym	26%
1262	0	δ(HOB)	23%
1250	0	δ(HOB)	40%
1238	108	δ(HOB)	34%
1221	1	δ(OCH) exocyc twist	68%
		opla(CC) butterfly at junction	21%
1221	0	δ(OCH) exocyc twist	68%
		opla(CC) butterfly at junction	21%
1175	0	δ(CCH) exocyc	19%
1163	39	δ(HOB)	22%
		δ(CCH) exocyc	23%
			20%
1148	0		35%
1148	15		36%
1102	0		23%
1099	110	δ(CCH) exocyc	21%
			21%
1065	0	v(CO)	33%
4057	<u></u>	v(OB)	24%
1057	62	V(CO)	45%
1022	0	τ (OD) τ (COBC) and/or τ (COBC) and τ ing tars (E")	23%
1022	0	opla(CC) butterfly at junction	65%
1022	0	$\tau(BCCC)$ cyc: ring tors (F")	11%
IOLL	Ű	opla(CC) butterfly at junction	65%
988	474	v(CO)	35%
986	0	v(CO)	41%
976	0	δ(CCC) cvc: puckering	16%
		τ (CCCC) cyc: ring pucker	15%
		opla(CC) butterfly at junction	39%
976	0	δ(CCC) cyc: puckering	15%
		τ (CCCC) cyc: ring pucker	16%
		opla(CC) butterfly at junction	39%
950	80	v(CF) antisym	16%
		v(CC) antisym	17%
950	0	v(CF) sym	16%
		v(CC) sym	16%
	64	opia(CH) exocyc	12%
874		$0\mu(0\pi)$	11%
		$\tau(CCCC)$ cyc: ring pucker and asym torsion	32% 32%
L	1	100000/ eye. They pucket and asymptotsion	JZ /0

874	0	opla(CH) exocyc	12%
		opla(CH)	12%
		δ (CCC) cyc: puckering and asym torsion	32%
		τ (CCCC) cyc: ring pucker and asym torsion	32%
844	0	δ (CCC) cyc: asym torsion	11%
		τ(CCCC) cyc: asym torsion	10%
		opla(CC) butterfly at junction	57%
844	38	δ (CCC) cvc: asym torsion	10%
011		τ (CCCC) cvc: asym torsion	11%
		opla(CC) butterfly at junction	57%
815	194		80%
775	17		<10%
775	17		<10%
775	0	and (00) butter fluent in a time time	<10%
771	0	opia(CC) butterily at junction	58%
750	9	opia(CC) butterfly at junction	69%
748	0	opla(CC) butterfly at junction	68%
727	0	$\delta(BOC)$ and/or $\delta(CCC)$ cyc-5: ring def. (E'1)	14%
		$\delta(BOC)$ and $\delta(CCC)$ cyc-5: ring def. (E'1)	14%
727	34	$\delta(BOC)$ and/or $\delta(CCC)$ cyc-5: ring def. (E'1)	14%
		$\delta(BOC)$ and $\delta(CCC)$ cyc-5: ring def. (E'1)	15%
652	5	δ(CCC) cvc: trig def (E')	9%
032	0	$\delta(B_0 - O_0 - C_7)$ and/or $\delta(C7 - C3 - C4)$ cyc-5; ring def. (E'1)	9%
		$\delta(CCC)$ cvc: asym def (E')	9%
		$\delta(BOC)$ and $\delta(CCC)$ cyc-5; ring def (E'1)	9%
649	0		25%
648	0		25%
			23%
647	45		25%
		τ(CCCC) cyc: ring pucker	25%
646	0	δ(CCC) cyc: trig def (E')	10%
		$\delta(BOC)$ and/or $\delta(CCC)$ cyc-5: ring def. (E'1)	8%
		δ (CCC) cyc: asym def (E')	10%
		$\delta(BOC)$ and $\delta(CCC)$ cyc-5: ring def. (E'1)	8%
555	13	δ (BOC) and/or δ (CCC) cyc-5: ring def. (E'1)	12%
		δ (CBO) and/or δ (OCC) cyc-5: ring def. (E'1)	17%
		$\delta(BOC)$ and/or $\delta(CCC)$ cyc-5: ring def. (E'1)	12%
		δ (CBO) and/or δ (OCC) cvc-5; ring def. (E'1)	17%
550	0	opla(CC) butterfly at junction	72%
550	0	opla(CC) butterfly at junction	72%
500	0	$\delta(BOC)$ and/or $\delta(CCC)$ cyc-5: ring def (E'1)	1 40/
546	0	$\delta(CBO)$ and/or $\delta(OCC)$ even 5: ring def. (E11)	14%
		S(BOC) and/or $S(CCC)$ even Ex ring def. (E.1)	1/%
		$\delta(BOC)$ and/or $\delta(CCC)$ eye 5. ring def. (E 1)	14%
			17%
518	11		21%
		δ(OBO)	21%
		δ(CCC) cyc: trig def (E')	15%
		δ(CCC) cyc: asym def (E')	15%
495	0	δ(OBO) exocyc	19%
		δ(OBO)	19%
		δ (CCC) cyc: trig def (E')	13%
		δ (CCC) cyc: asym def (E')	13%
465	0	δ(CCF)	11%
400	0	$\delta(CCF)$ exocvc	11%
		δ (CCC) cvc; trig def (E')	15%
		δ (CCC) cvc: asym def (E')	15%
464	0	δ(CCF)	1 40/
404	ö		14%
		$\delta(CCC)$ cyc: trig def (E')	14%
		$\delta(CCC)$ cyc: asym dof (E')	1/%
400			1170
438	12	o(UCU) cyc: asym torsion	35%
		τ(CCCC) cyc: asym torsion	41%
438	0	δ(CCC) cyc: asym torsion	41%
		τ(CCCC) cyc: asym torsion	35%

Frequency values below 400 cm⁻¹ are not reported, nor the PED contributions below 10%. The abbreviations in Table S5 are as follows :

v(XY) stretching of XY bond	δ (XYZ) cyc: trig def (E') bending of the cycle using the trigonometric definition and E' symmetry
δ (XYZ) bending of XYZ	δ (XYZ) cyc: puckering puckering bending of the cycle
τ(AXYZ) torsion of AXYZ	δ (XYZ) cyc: asym torsion asymetric torsion of the cycle
δ (XYZ) exocyc bending of the exocycle	δ (XYZ) cyc: ring def, (E') bending of the cycle using the trigonometric definition and ring E' symmetry
opla(XY) exocyc out-of-plane of the exocycle	δ (XYZ) cyc: trig def (E') bending of the cycle using the trigonometric definition and E' symmetry
δ (AXA) exocyc rock rocking of the exocycle	τ (AXYZ) cyc: ring tors (E") torsion of the cycle using the trigonometric definition and ring E" symmetry
δ (XYZ) exocyc twist twisting of the exocycle	τ (AXYZ) cyc: ring pucker puckering torsion of the ring
opla(XA) out-of plane of XAYZ	τ (AXYZ) cyc: asym torsion asymetric torsion of the cycle
δ (XYZ) exocyc wag wagging of the exocycle	opla(XY) butterfly at junction out-of-plane at the ring junction of XYZA
δ (AXA) exoccyc scisso scissoring of the exocycle	

where A, X, Y, and Z are atoms. Sym = symmetric, asym = asymmetric.

Table S6: Vibration frequencies (and related intensities), calculated for a dimer model of BBzx, after geometry optimization (using the B3LYP/6-311++G(d,p) method, as implemented in Gaussian09).

Frequency values below 400 cm⁻¹ are not reported.

Calculated Frequency (cm ⁻¹)	Calculated Intensity (cm ⁻¹)	Calculated Frequency (cm ⁻¹)	Calculated Intensity (cm ⁻¹)
3556	3156	1165	49
3521	0	1106	0
3186	4	1104	41
3186	45	1065	0
3175	24	1054	60
3174	20	1044	1
3165	1	1044	0
3165	3	1024	0
3156	4	1024	0
3156	5	1004	0
3070	27	1004	0
3070	0	986	488
3035	0	984	0
3035	60	966	1
1649	0	966	0
1648	78	887	0
1612	0	887	0
1612	5	846	2
1513	470	845	0
1507	0	820	215
1501	0	781	0
1501	20	778	30
1487	60	770	0
1486	0	740	83
1463	629	739	0
1461	0	736	0
1392	150	736	6
1388	0	677	12
1331	0	673	0
1331	10	650	0
1317	112	649	29
1310	0	553	1
1256	0	539	14
1245	114	538	0
1219	1	528	0
1219	0	474	0
1218	3	474	12
1217	0	465	1
1187	0	459	0
1183	0	418	0
1175	0	418	4

Figure S9. Comparison between experimental and calculated ¹H NMR spectra of AN2690 and BBzx. Experimental solid state NMR data are shown in blue, and calculated ¹H chemical shifts as vertical red bars. Calculated values correspond to the VASP-relaxed periodic model of the structure.

b/ BBzx

 H_1

H_{7A}

H⁸

Figure S10. Comparison between experimental and calculated ¹³C NMR spectra of AN2690 and BBzx. Experimental solid state NMR data are shown in blue, solution NMR data in black, and calculated ¹³C chemical shifts as vertical red bars. Calculated values correspond to the VASP-relaxed periodic model of the structure.

a/ AN2690

b/ BBzx

		Exp	Ca	lc	Ca	alc	Calc		
			(for model	lobtained	(for mode	el obtained	(for model obtained		
			after '	VASP	after C	rystal09	after QE relaxation)		
			relaxa	ition)	relax	ation			
					(B3LYP-D	0*; BS-A))			
AN2690 struct	ure	[1]	[2]	[1]	[2]	[2] [1]		[1]	
$\delta_{iso}(^{1}H)$	H ₂	5 to 8	8.2	8.0	8.2	8.2	8.9	8.8	
	H ₃		6.5	6.5	6.7	6.8	6.6	6.6	
	H ₅	5 to 8	6.2	6.2	6.4	6.2	6.3	6.4	
	H ₆		6.9	6.9	6.9	6.4	6.9	6.9	
	H _{7A}	4 to 5	4.3	4.4	5.1	4.4	4.5	4.5	
	H _{7B}		4.9	4.9	5.3	4.9	5.1	5.1	
$\delta_{iso}(^{13}C)$	C ₁	123.6	125.7	126.1	127.2	126.5	127.1	127.3	
	C ₂	154.6	159.8	159.7	161.4	159.8	159.7	160.0	
	C ₃	108.3	111.2	110.6	111.7	110.4	111.8	111.2	
	C ₄	165.7	174.3	174.8	174.8	174.3	176.2	176.6	
	C ₅	116.6	119.4	118.9	119.3	118.9	120.2	119.8	
	C ₆	133.2	136.7	136.4	135.9	135.9	137.4	137.0	
	C ₇	71.8	74.5	74.9	78.5	74.9	77.7	77.6	
$\delta_{iso}(^{19}F)$	F ₁	-108.6	-108.7	-109.7	-109.8	-110.5	-105.0	-105.8	
δ _{iso} (¹¹ B)	B ₁	31.1	32.1	32.3	32.6	32.0	32.0	32.1	
$C_{Q}(^{11}B)^{3}$		2.84	3.26	3.26	3.22	3.24	3.26	3.26	
$\eta_{Q}(^{11}B)$		0.51	0.60	0.59	0.60	0.57	0.59	0.59	
δ _{iso} (¹⁷ 0)	O ₁	-	98.0	98.6	100.2	97.6	103.0	103.0	
	0 ₂	-	71.5	68.7	70.8	67.5	76.1	73.7	
C _Q (¹⁷ O)	O ₁	-	8.68	8.72	8.81	8.75	8.70	8.73	
	0 ₂	-	6.61	6.59	6.55	6.53	6.52	6.50	
η ₀ (¹⁷ Ο)	O ₁	-	0.42	0.42	0.41	0.39	0.45	0.44	
	0,	-	0.27	0.27	0.27	0.26	0.28	0.28	

Table S7. GIPAW-calculated ¹H, ¹³C, ¹¹B, ¹⁹F and ¹⁷O NMR parameters for different periodic models of the AN2690 structure. δ_{iso} values are in ppm, and C_Q values in MHz.

[1] This work (CCDC 986106).

- [2] I. D. Madura, A. Adamczyk-Wozniak, M. Jakubczyk and A. Sporzynski, Acta Cryst. 2011, 67, 414.
- [3] C_Q values were calculated using $Q(^{11}B)$ = 40.59 mb.

Table S8. GIPAW-calculated ¹ H, ¹³ C, ¹¹ B, and ¹⁷ O NMR parameters for different periodic models of the	5
BBzx structure. δ_{iso} values are in ppm, and C _Q values in MHz.	

		Exp	Calc		
			(for r	nodel	
			obtaine	ed after	
			VASD ro	lavation)	
	nh	D(1) ¹			
BBZX POlymor	pn	P(1)	P(1)	P(2)	
ὄ _{iso} (⁺H)	H ₁	6.3 to 8	7.7	7.7	
	H ₈		7.8	7.8	
	H ₂		7.0	7.0	
	H9		7.0	7.0	
	H ₃	5 to 6.3	6.3	6.3	
	H ₁₀		5.8	5.8	
	H,		5.6	5.6	
	H		5.7	5.7	
	н <u>11</u>	6 2 to 8	7.1	7.1	
	115	0.5 10 8	7.1	7.1	
	Π ₁₂	<u> </u>	7.1	7.1	
	H ₆	4 to 5	4.5	4.6	
	H ₁₄		4.6	4.6	
	H ₇		4.5	4.6	
	H_{13}		4.6	4.6	
$\delta_{iso}(^{13}C)$	C ₁	~130.3	132.9	133.0	
, , ,	C ₈	~130.3	133.1	133.0	
	C ₂	~129.2	131.7	131.8	
	C_	~129.2	131 7	131 7	
	C	126.6	120.0	120.0	
		120.0	120.0	120.0	
	C ₁₀	127.8	130.3	130.3	
	C ₄	~130.3	133.3	133.0	
	C ₁₁	~129.2	130.9	131.0	
	C ₅	121.1	121.0	121.1	
	C ₁₂	121.1	121.0	121.0	
	C ₆	153.7	158.8	158.9	
	C ₁₃	153.7	159.2	158.9	
	C ₇	72.0	73.6	73.6	
	C14	72.0	73.7	74.0	
$\delta_{\rm c}$ (¹¹ B)	B-	31.1	31.6	31.5	
UISO(D)	B-	51.1	21 5	21 5	
$(1^{11} P)^3$	P2	2 2 7	2 27	2 27	
		2.07	2.27	3.27	
(11-)	¹⁰ 2	0.40	3.28	3.28	
η _Q (Β)	В1	0.48	0.56	0.56	
	В ₂		0.56	0.56	
ὄ _{iso} (*′Ο)	01	N.D.	98.7	99.9	
	O ₃		99.4	99.9	
	0,	N.D.	69.9	70.1	
	0.		69.9	70.3	
$C_{Q}(^{17}O)^{3}$	•4		00.0	, 0.5	
	01	N.D.	8.63	8.62	
	O ₃		8.65	8.63	
	0		6.67	6.64	
$n_{0}(170)$		N.D.	0.02	0.04	
	O_4		6.58	6.58	
	01	N.D.	0.40	0.40	
	0		0.39	0.40	
	•3		0.00	0.40	
	02	N.D.	0.24	0.24	
	O4		0.24	0.24	

[1] CSD LOQQEN: *Tetrahedron Lett.* 1999, **40**, 6705 (polymorph characterized in this manuscript). [2] CCDC 744739: *J. Phys. Chem. A*, 2010, **114**, 2324. [3] C_Q values were calculated using $Q(^{11}B) = 40.59$ mb.

Table S9: Comparison of the geometrical parameters in different periodic models of AN2690 after DFT relaxation, and in the two crystal structures reported so far.

	AN2690 [1]			AN2690 [2]							
	Expt	Calc	Calc	Calc	Expt	Calc	Calc	Calc			
	[1]				[2]						
		(for model	(for model	(for model		(for model	(for model	(for model			
		obtained	optained	obtained		obtained	obtained	obtained			
		after VASP	Crystal09	after QE		atter VASP	atter	after QE			
		relaxation	relaxation	relaxation		relaxation	relayation	relaxation)			
			(B3LYP-D*;				(B3LYP-D*:				
			BS-A))				BS-A))				
Distances (in Å)											
B1-O1	1.388	1.405	1.401	1.406	1.392	1.404	1.401	1.405			
B1-O2	1.344	1.358	1.357	1.356	1.348	1.356	1.355	1.356			
01-C7	1.446	1.453	1.447	1.471	1.447	1.449	1.443	1.470			
C7-C2	1.500	1.502	1.509	1.504	1.503	1.501	1.506	1.503			
C2-C1	1.393	1.404	1.405	1.409	1.395	1.406	1.402	1.409			
C1-B1	1.547	1.549	1.564	1.548	1.552	1.548	1.566	1.548			
C1-C6	1.397	1.401	1.401	1.404	1.401	1.400	1.389	1.404			
C6-C5	1.378	1.394	1.393	1.396	1.386	1.394	1.387	1.396			
C5-C4	1.377	1.393	1.394	1.395	1.383	1.394	1.386	1.395			
C4-F1	1.356	1.372	1.367	1.386	1.356	1.373	1.367	1.387			
C4-C3	1.372	1.388	1.388	1.390	1.382	1.387	1.382	1.389			
C3-C2	1.382	1.393	1.392	1.396	1.390	1.393	1.388	1.396			
01(H2)-O2	2.774	2.774	2.738	2.755	2.761	2.766	2.746	2.751			
O2-H2	0.859	0.991	0.986	1.007	0.832	0.992	0.984	1.007			
H201	1.916	1.784	1.753	1.749	1.931	1.774	1.762	1.744			
Ω Ω	4.028	4.028	4.028	4.028	3.880	3.880	3.880	3.880			
				Angles (in °)							
01-B1-02	121.6	121.5	121.8	121.3	121.5	120.8	121.8	121.1			
01-B1-C1	108.2	108.2	107.4	108.4	108.2	108.3	107.2	108.4			
B1-C1-C2	105.2	105.1	105.2	105.4	104.9	105.0	105.3	105.3			
C1-C2-C7	110.6	110.8	110.7	110.9	110.9	110.8	110.6	110.9			
C2-C7-O1	105.5	105.6	105.4	105.3	105.5	105.7	105.6	105.3			
B1-O1(H2)-O2	126.2	127.2	126.2	127.7	126.4	126.9	125.7	127.5			
02-H2-O1	176.7	177.0	177.3	177.0	175.4	178.6	177.5	177.5			

[1] This work (CCDC 986106).

[2] I. D. Madura, A. Adamczyk-Wozniak, M. Jakubczyk and A. Sporzynski, Acta Cryst. 2011, 67, 414.

