Electronic Supplementary Information (ESI) for

Five Cd(II) Coordination Polymers Based on 2,3',5,5'-Biphenyl Tetracarboxylic Acid and N-donor Coligands: Syntheses, Structures and Fluorescent Properties

Xin-Hong Chang^a, Ying Zhao^{a,b}, Min-Le Han^a, Lu-Fang Ma^{a,*} and Li-Ya Wang ^{a,c*}

^a College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471022,

P. R. China

^b College of Chemistry and Molecular Engineering, Zhengzhou University, Henan 450052, P. R.

China

^c College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, P. R. China

^{*} Corresponding author. Fax: +86-379-65526089. E-mail address: <u>mazhuxp@126.com</u> (L. F. Ma); <u>wlya@lynu.edu.cn</u> (L. Y. Wang).

Complexes	1	2	3	4	5
Formula	$C_{41}H_{32}Cd_2N_4O_{18}\\$	$C_{26}H_{24}Cd_2N_4O_{10}$	$C_{30}H_{30}Cd_2N_4O_{13}\\$	$C_{36}H_{28}CdN_4O_9$	$C_{31}H_{20}Cd_2N_6O_9$
Formula weight	1093.51	777.29	879.38	773.02	845.33
Temperature	296(2)	296(2)	296(2)	296(2)	296(2)
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	C2/c	<i>P</i> 2 ₁	$P2_1/n$	$P2_{1}/n$	$P2_1/n$
<i>a</i> (Å)	18.65(3)	10.3863(12)	11.128(5)	17.246(6)	13.3294(17)
<i>b</i> (Å)	7.982(11)	12.9737(15)	14.055(6)	17.018(6)	16.202(2)
<i>c</i> (Å)	27.53(4)	10.8834(13)	22.979(10)	10.945(4)	20.283(3)
β(°)	109.469(16)	113.5820(10)	103.992(5)	91.414(4)	99.496(2)
$V(Å^3)$	3863(9)	1344.1(3)	3488(3)	3211(2)	4320.4(9)
Ζ	4	2	4	4	4
$D_c(\text{g cm}^{-3})$	1.880	1.921	1.675	1.599	1.300
μ (mm ⁻¹)	1.192	1.648	1.287	0.745	1.031
F (000)	2184	768	1752	1568	1664
θ Range/°	2.33-25.50	2.29-25.50	2.29-25.50	2.36-25.50	2.35-25.50
Reflns. collected	9642	6860	25105	24207	31893
Independent reflns.	3552	4185	6473	5977	8042
R _{int}	0.1172	0.0169	0.0459	0.0583	0.0799
Data/restraints/parameters	3552/99/295	4185/1/379	6473/0/442	5977/0/453	8042/21/433
GOOF	1.064	1.032	1.034	1.021	0.987
$R_1^a, wR_2^b[I \ge 2\sigma(I)]$	0.0806, 0.1987	0.0182, 0.0388	0.0301, 0.0617	0.0370, 0.0665	0.0590, 0.1463
R_1 , wR_2 (all data)	0.1269, 0.2398	0.0191, 0.0391	0.0450, 0.0672	0.0624, 0.0753	0.1021, 0.1622
$\Delta \rho_{max}$ and $\Delta \rho_{min}$ (e Å ⁻³)	1.921, -1.978	0.287, -0.369	0.597, -0.411	0.374, -0.406	2.253, -2.044

Table S1. Crystallographic Data and Structure Refinement Details for 1–5.

 ${}^{a}R_{1} = \Sigma(\left|F_{o}\right| - \left|F_{o}\right|)/\Sigma|F_{o}|; {}^{b}wR_{2} = \{\Sigma[w(\left|F_{o}\right|^{2} - \left|F_{o}\right|^{2})^{2}]/\Sigma[w(\left|F_{o}\right|^{2})^{2}]\}^{1/2}.$

Table S2 Selected bond distances (Å) and angles (°) of complexes 1–5ª.					
Complex 1					
Cd(1)-O(7)#1	2.221(9)	O(8)-Cd(1)-O(2)#2	146.6(3)		
Cd(1)-O(1)	2.312(8)	O(7)#1-Cd(1)-O(3)#3	104.2(3)		
Cd(1)-O(8)	2.322(8)	O(1)-Cd(1)-O(3)#3	93.6(3)		
Cd(1)-O(2)#2	2.349(8)	O(8)-Cd(1)-O(3)#3	80.0(3)		
Cd(1)-O(3)#3	2.378(8)	O(2)#2-Cd(1)-O(3)#3	131.9(3)		
Cd(1)-O(2)#3	2.526(8)	O(7)#1-Cd(1)-O(2)#3	111.3(3)		
O(7)#1-Cd(1)-O(1)	161.9(3)	O(1)-Cd(1)-O(2)#3	81.8(3)		
O(7)#1-Cd(1)-O(8)	92.1(3)	O(8)-Cd(1)-O(2)#3	131.0(2)		
O(1)-Cd(1)-O(8)	87.9(3)	O(2)#2-Cd(1)-O(2)#3	78.7(2)		
O(7)#1-Cd(1)-O(2)#2	89.0(3)	O(3)#3-Cd(1)-O(2)#3	53.3(3)		
O(1)-Cd(1)-O(2)#2	82.6(3)				
Complex 2					
Cd(1)-O(4)	2.223(3)	N(1)-Cd(1)-O(2)#3	93.72(11)		
Cd(1)-N(1)	2.273(3)	O(8)#1-Cd(1)-O(2)#3	106.08(9)		
Cd(1)-O(8)#1	2.277(2)	O(6)#2-Cd(1)-O(2)#3	124.70(9)		
Cd(1)-O(6)#2	2.291(2)	O(3)-Cd(2)-O(9)	102.36(10)		
Cd(1)-O(2)#3	2.314(2)	O(3)-Cd(2)-N(4)#4	165.87(11)		
Cd(2)-O(3)	2.203(3)	O(9)-Cd(2)-N(4)#4	90.51(10)		
Cd(2)-O(9)	2.247(2)	O(3)-Cd(2)-O(10)	81.22(10)		
Cd(2)-N(4)#4	2.269(3)	O(9)-Cd(2)-O(10)	172.47(9)		
Cd(2)-O(10)	2.333(2)	N(4)#4-Cd(2)-O(10)	86.70(10)		
Cd(2)-O(5)#2	2.339(2)	O(3)-Cd(2)-O(5)#2	90.51(10)		
Cd(2)-O(7)#5	2.400(2)	O(9)-Cd(2)-O(5)#2	82.44(9)		
O(4)-Cd(1)-N(1)	179.23(11)	N(4)#4-Cd(2)-O(5)#2	97.03(10)		
O(4)-Cd(1)-O(8)#1	87.94(10)	O(10)-Cd(2)-O(5)#2	90.96(8)		
N(1)-Cd(1)-O(8)#1	91.32(10)	O(3)-Cd(2)-O(7)#5	87.70(10)		
O(4)-Cd(1)-O(6)#2	95.28(9)	O(9)-Cd(2)-O(7)#5	82.74(9)		
N(1)-Cd(1)-O(6)#2	85.37(10)	N(4)#4-Cd(2)-O(7)#5	88.17(10)		
O(8)#1-Cd(1)-O(6)#2	129.21(8)	O(10)-Cd(2)-O(7)#5	104.14(9)		
O(4)-Cd(1)-O(2)#3	86.27(10)	O(5)#2-Cd(2)-O(7)#5	164.32(8)		
Complex 3					
Cd(1)-N(4)	2.219(3)	O(9)#2-Cd(1)-O(12)#1	96.91(9)		
Cd(1)-O(13)#1	2.237(2)	N(4)-Cd(1)-O(8)#2	84.46(10)		
Cd(1)-O(7)	2.252(2)	O(13)#1-Cd(1)-O(8)#2	94.97(9)		
Cd(1)-O(9)#2	2.273(2)	O(7)-Cd(1)-O(8)#2	140.60(8)		
Cd(1)-O(12)#1	2.471(2)	O(9)#2-Cd(1)-O(8)#2	54.21(7)		
Cd(1)-O(8)#2	2.504(2)	O(12)#1-Cd(1)-O(8)#2	100.46(9)		
Cd(2)-N(1)#3	2.245(3)	N(1)#3-Cd(2)-O(6)	150.82(11)		
Cd(2)-O(6)	2.258(2)	N(1)#3-Cd(2)-O(10)#4	88.23(11)		
Cd(2)-O(10)#4	2.296(3)	O(6)-Cd(2)-O(10)#4	117.38(10)		
Cd(2)-O(4)	2.375(3)	N(1)#3-Cd(2)-O(4)	89.84(12)		
Cd(2)-O(5)	2.413(3)	O(6)-Cd(2)-O(4)	82.10(10)		

Cd(2)-O(11)#4	2.464(3)	O(10)#4-Cd(2)-O(4)	79.34(11)
N(4)-Cd(1)-O(13)#1	104.72(10)	N(1)#3-Cd(2)-O(5)	86.36(11)
N(4)-Cd(1)-O(7)	96.19(10)	O(6)-Cd(2)-O(5)	91.93(9)
O(13)#1-Cd(1)-O(7)	122.45(9)	O(10)#4-Cd(2)-O(5)	119.68(10)
N(4)-Cd(1)-O(9)#2	101.85(10)	O(4)-Cd(2)-O(5)	160.40(9)
O(13)#1-Cd(1)-O(9)#2	136.58(9)	N(1)#3-Cd(2)-O(11)#4	123.83(11)
O(7)-Cd(1)-O(9)#2	87.52(8)	O(6)-Cd(2)-O(11)#4	84.40(9)
N(4)-Cd(1)-O(12)#1	159.67(10)	O(10)#4-Cd(2)-O(11)#4	54.40(9)
O(13)#1-Cd(1)-O(12)#1	55.41(8)	O(4)-Cd(2)-O(11)#4	117.11(10)
O(7)-Cd(1)-O(12)#1	92.37(8)	O(5)-Cd(2)-O(11)#4	80.57(9)
Complex 4			
Cd(1)-N(4)#1	2.234(3)	O(8)-Cd(1)-O(1)	83.73(9)
Cd(1)-O(8)	2.277(2)	N(1)-Cd(1)-O(1)	161.70(9)
Cd(1)-N(1)	2.333(3)	O(4)#2-Cd(1)-O(1)	115.91(10)
Cd(1)-O(4)#2	2.417(2)	N(4)#1-Cd(1)-O(9)	105.85(10)
Cd(1)-O(1)	2.474(3)	O(8)-Cd(1)-O(9)	54.55(8)
Cd(1)-O(9)	2.519(2)	N(1)-Cd(1)-O(9)	79.25(9)
Cd(1)-O(5)#2	2.539(2)	O(4)#2-Cd(1)-O(9)	133.09(8)
N(4)#1-Cd(1)-O(8)	157.30(10)	O(1)-Cd(1)-O(9)	83.35(9)
N(4)#1-Cd(1)-N(1)	96.85(11)	N(4)#1-Cd(1)-O(5)#2	83.77(7)
O(8)-Cd(1)-N(1)	90.71(10)	O(8)-Cd(1)-O(5)#2	109.77(9)
N(4)#1-Cd(1)-O(4)#2	118.33(9)	N(1)-Cd(1)-O(5)#2	123.39(9)
O(8)-Cd(1)-O(4)#2	83.97(9)	O(4)#2-Cd(1)-O(5)#2	51.77(7)
N(1)-Cd(1)-O(4)#2	80.62(9)	O(1)-Cd(1)-O(5)#2	74.81(8)
N(4)#1-Cd(1)-O(1)	82.45(11)	O(9)-Cd(1)-O(5)#2	154.85(9)
Complex 5			
Cd(1)-N(1)	2.247(6)	Cd(2)-O(6)#3	2.219(6)
Cd(1)-N(6)#1	2.256(5)	Cd(2)-N(4)#4	2.234(6)
Cd(1)-O(2)	2.269(4)	Cd(2)-O(4)	2.272(6)
Cd(1)-O(8)#2	2.280(5)	Cd(2)-O(9)	2.385(9)
Cd(1)-O(1)	2.453(5)	Cd(2)-O(3)	2.482(5)
Cd(1)-O(7)#2	2.532(5)	O(2)-Cd(1)-O(7)#2	102.46(17)
N(1)-Cd(1)-N(6)#1	93.0(2)	O(8)#2-Cd(1)-O(7)#2	53.33(17)
N(1)-Cd(1)-O(2)	94.24(19)	O(1)-Cd(1)-O(7)#2	153.27(19)
N(6)#1-Cd(1)-O(2)	147.25(18)	O(6)#3-Cd(2)-N(4)#4	114.0(2)
N(1)-Cd(1)-O(8)#2	139.59(18)	O(6)#3-Cd(2)-O(4)	87.6(2)
N(6)#1-Cd(1)-O(8)#2	88.6(2)	N(4)#4-Cd(2)-O(4)	156.7(2)
O(2)-Cd(1)-O(8)#2	105.89(19)	O(6)#3-Cd(2)-O(9)	105.8(3)
N(1)-Cd(1)-O(1)	105.6(2)	N(4)#4-Cd(2)-O(9)	92.3(3)
N(6)#1-Cd(1)-O(1)	92.42(18)	O(4)-Cd(2)-O(9)	89.6(3)
O(2)-Cd(1)-O(1)	54.89(16)	O(6)#3-Cd(2)-O(3)	140.7(2)
O(8)#2-Cd(1)-O(1)	114.7(2)	N(4)#4-Cd(2)-O(3)	104.1(2)
N(1)-Cd(1)-O(7)#2	88.64(18)	O(4)-Cd(2)-O(3)	53.29(19)
	100 (2)(19)	O(0) Cd(2) O(2)	90.7(2)

Symmetry transformations used to generate equivalent atoms: #1: x, y - 1, z; #2: -x + 1/2, -y - 1/2, -z; #3: x - 1/2, y - 1/2, z for 1. #1: x, y, z - 1; #2: x - 1, y, z - 1; #3: -x + 2, y - 1/2, -z + 2; #4: x, y + 1, z; #5: -x + 2, y + 1/2, -z + 2 for 2. #1: -x + 1, -y + 1, -z; #2: -x + 3/2, y - 1/2, -z + 1/2; #3: -x + 2, -y + 1, -z + 1; #4: x + 1, y, z for 3. #1: x + 1, -y + 3/2, -z - 1/2; #2: x, y, z - 1 for 4. #1: x, -y + 3/2, z - 1/2; #2: x + 1, y, z - 1; #3: x, -y + 1/2, z + 1/2; #4: -x + 1, y - 1/2, -z + 3/2 for 5.

D-H···A	d(D-H)	d(H…A)	d(D…A)	∠(DHA)
Complex 1				
O(1)-H(1W)O(5)#7	0.85	2.56	3.408(14)	179.6
O(1)-H(2W)O(6)#8	0.85	2.25	2.706(12)	113.6
O(5)-H(5)O(3)#9	0.82	1.96	2.731(13)	156.5
Complex 2				
O(10)-H(4W)…O(6)#5	0.85	1.96	2.783(3)	164.1
O(10)-H(3W)…O(1)#2	0.85	2.17	2.699(3)	120.5
O(9)-H(2W)····O(2)#1	0.85	1.91	2.753(4)	169.5
O(9)-H(1W)····O(8)#1	0.85	1.95	2.761(3)	159.9
Complex 3				
O(1)-H(1W)O(5)#5	0.85	2.27	3.081(4)	160.6
O(1)-H(2W)O(13)#9	0.85	2.19	2.938(4)	146.0
O(2)-H(3W)O(3)#8	0.85	1.90	2.740(5)	168.7
O(2)-H(4W)O(12)#1	0.85	2.14	2.988(4)	174.0
O(3)-H(5W)O(11)#9	0.85	1.95	2.765(4)	159.7
O(3)-H(6W)O(6)#3	0.85	2.22	2.869(4)	133.6
O(4)-H(7W)N(1)#3	0.85	2.62	3.263(5)	132.8
O(4)-H(8W)O(1)#4	0.85	1.96	2.805(4)	174.4
O(5)-H(9W)O(9)#2	0.85	1.98	2.822(3)	173.1
O(5)-H(10W)O(1)#2	0.85	2.26	3.081(4)	162.0
Complex 4				
O(6)-H(6)O(5)#5	0.82	1.74	2.541(3)	165.0
O(2)-H(2)O(4)#6	0.82	1.83	2.645(3)	172.2
O(1)-H(2W)O(7)#7	0.85	2.09	2.923(3)	165.0
O(1)-H(1W)O(7)	0.85	2.08	2.907(4)	163.3
Complex 5				
O(9)-H(2W)O(1)#9	0.85	2.22	2.850(8)	131.2

Table S3 Hydrogen bonding distances (Å) and angles (°) data for 1–5^a.

^{*a*} Symmetry codes: #7: x - 1/2, -y + 1/2, z - 1/2; #8 -x, -y, -z; #9 - x + 1, y, -z + 1/2 for **1**. #1: x, y, z - 1; #2: x - 1, y, z - 1; #5: -x + 2, y + 1/2, -z + 2 for **2**. #1: -x + 1, -y + 1, -z; #2: -x + 3/2, y - 1/2, -z + 1/2; #3: -x + 2, -y + 1, -z + 1; #4: x + 1, y, z; #5: -x + 3/2, y + 1/2, -z + 1/2; #7: x - 1/2, -y + 3/2, z + 1/2; #8: x, y, z - 1; #9: -x + 1, -y + 1, -z + 1; #6: -x + 2, -y + 1, -z + 1; #7: -x + 3, -y + 1, -z for **4.** #9: -x, -y + 1, -z + 1 for **5**.

Fig. S1. (a) View of 2D layer along the crystallographic [110] direction in **1**. (b) View of 2D layer along the[100] direction in **1**. (c) $\pi \cdots \pi$ stacking interactions exist between benzene rings of Hbptc³⁻ ligands and imidazole rings of 1,3-H₂bip ligands.

Fig. S2. View of the 2D layer constructed by Cd(II) atoms and bptc⁴⁻ ligands.

Fig. S3. View of 3D network of **5**, in which, two parts of **dia** nets (green and red) are joined together by N4-Cd2 bonds (pink).

Fig. S4. Comparison of the experimental and simulated PXRD patterns. In each case, the top is the experimental pattern and the bottom is the simulated one.