Head-to-tail photodimerization of a thiophene in a co-crystal and a rare adipic acid dimer in the presence of a heterosynthon

Kristin M. Hutchins, Joseph C. Sumrak, Dale C. Swenson and Leonard R MacGillivray

Department of Chemistry, University of Iowa, Iowa City, IA, 52242 USA Email: len-macgillivray@uiowa.edu

Supplementary Information Content:

- 1) Experimental information
- 2) ¹H NMR spectroscopy
- 3) Single crystal X-ray diffraction

1) Experimental information

Unless otherwise noted, all starting materials and solvents were commercially available from Aldrich Chemical Co.

β-PTE was synthesized as previously reported.¹

Preparation of co-crystals: Co-crystals were obtained by dissolving β -PTE (15 mg, 0.08 mmol) and the appropriate dicarboxylic acid (0.04 mmol) in an organic solvent (succinic acid(SA): tetrahydrofuran, glutaric acid(GA): acetonitrile, adipic acid(AA): ethyl acetate). All solutions were filtered through a cotton plug. The solutions were allowed to evaporate slowly over 1-2d. The obtained co-crystals were colorless and displayed plate- or prism-shaped morphologies.

UV-irradiation experiments: Finely ground samples of $2(\beta$ -PTE)·(SA), $2(\beta$ -PTE)·(GA), and (β -PTE)·(AA) (30 mg) were irradiated using a 500 W broadband mercury lamp. The progress of the photoreaction was monitored by ¹H NMR spectroscopy.

Separation of photoproduct from CCF: The photoirradiated powder of $2(\beta$ -PTE)·(SA) was stirred in a 1M solution of potassium hydroxide for 15 minutes under low heat. The photoproduct was extracted from the solution with dichloromethane, dried with MgSO₄, and the solvent was removed. The powder was redissolved in a solution of 3:2 CH₃CN:toluene (ν/ν). Slow solvent evaporation over 3 days yielded colorless plate-shaped crystals suitable for single crystal X-ray diffraction.

2) ¹H NMR Spectroscopy

¹H NMR data was collected on an AVANCE Bruker NMR spectrometer operating at 300 MHz using DMSO- d_6 as the solvent.

Figure S1. Spectrum of $2(\beta$ -PTE)·(SA).

Figure S2. Spectrum of $2(\beta$ -**PTE**)·(**SA**) after 110 hrs UV irradiation.

Figure S3. Spectrum of $2(\beta$ -PTE)·(GA).

Figure S4. Spectrum of $(\beta$ -PTE)·(AA).

3) Single crystal X-ray diffraction

Single-crystal XRD was measured on a Nonius Kappa CCD single-crystal X-ray diffractometer using MoK_{α} radiation (λ =0.7107 Å). Structure solution and refinement were accomplished using SHELXS-97 and SHELXL-97, respectively.² All non-hydrogen atoms were refined anisotropically. Hydrogen atoms associated with carbon atoms were refined in geometrically constrained positions.

compound name	2(β-PTE)·(succinic acid)	4p3tc
chemical formula	2(C11H9NS)⋅C4H6O4	$C_{22}H_{18}N_2S_2$
formula mass	492.59	374.5
crystal system	monoclinic	monoclinic
space group	P21/c	P21/c
a/Å	9.283(1)	11.689(1)
b/Å	19.692(2)	15.176(2)
c/Å	13.665(2)	12.166(1)
α/°	90	90
β/°	108.704(5)	117.334(5)
γ/°	90	90
V/Å ³	2365.9(4)	1917.1(3)
ρ _{calc} /g cm ⁻³	1.383	1.298
T/K	298(2)	298(2)
Z	4	4
radiation type	ΜοΚα	ΜοΚα
μ /mm ⁻¹	0.262	0.285
no. of reflections measured	15445	10820
no. of independent reflections	4156	3380
no of reflection (I > $2\sigma(I)$)	2713	2218
R _{int}	0.0645	0.0354
R_1 (I > 2 σ (I))	0.0591	0.0443
$wR(F^{2}) (I > 2\sigma(I))$	0.1319	0.1052
R1 (all data)	0.1029	0.0822
wR(F ²) (all data)	0.1523	0.1268
CCDC deposition number	989758	989759

Table S1. C	rystallographic	parameters for	$2(\beta-PTE) \cdot (SA)$	and 4p3tc.
-------------	-----------------	----------------	---------------------------	------------

compound name	2(β-PTE)·(glutaric acid)	(β-PTE)·(adipic acid)
chemical formula	2(C11H9NS)⋅C5H8O4	C11H9NS·C6H10O4
formula mass	506.61	333.39
crystal system	monoclinic	triclinic
space group	P21/c	P-1
a/Å	15.935(2)	5.6534(6)
b/Å	7.3782(7)	8.1587(8)
c/Å	21.823(3)	18.996(2)
α/°	90	83.851(5)
β/°	100.382(5)	83.879(5)
γ/°	90	74.142(5)
V/Å ³	2523.8(5)	835.2(2)
ρ _{calc} /g cm⁻³	1.333	1.326
T/K	190(2)	298(2)
Z	4	2
radiation type	ΜοΚα	ΜοΚα
µ /mm⁻¹	0.247	0.213
no. of reflections measured	43736	3741
no. of independent reflections	4433	2472
no of reflection (I > $2\sigma(I)$)	3525	1190
R _{int}	0.0318	0.0601
R₁ (I > 2σ(I))	0.0408	0.061
$wR(F^2) (I > 2\sigma(I))$	0.096	0.1012
R1 (all data)	0.0564	0.1643
wR(F ²) (all data)	0.1041	0.1279
CCDC deposition number	989760	989761

Table S2. Crystallographic parameters for $2(\beta$ -PTE)·(GA) and $(\beta$ -PTE)·(AA).

References

- 1) K. M. Hutchins, J. C. Sumrak and L. R. MacGillivray, Org. Lett., 2014, 16, 1052.
- 2) G. M. Sheldrick, Acta Crystallogr. A, 2008, 64, 112.