Hydrothermal synthesis, crystal structures and photoluminescence properties of two mixed Eu³⁺ and Y³⁺ lanthanide metal-organic framework materials

Yu Zhang, Weiwei Ju, Xiao Xu, Yun Lv, Dunru Zhu, Yan Xu*

Fig. S1 a) View of the 3D structure of **2** along the c axis; Yellow line: the zigzag distribution of N atoms. b) View of the 3D structure of **2** along the a axis; Green line: the zigzag distribution of N atoms

Fig. S2 The simulated and experimental powder X-ray diffraction patterns for compound 1 and 1 calcined at 200℃ for 2 hours.

Fig. S3 The simulated and experimental powder X-ray diffraction patterns for compound 2 and 2 calcined at 200°C for 2 hours.

Element	Weight %	Atom %	Formula	Compnd %	Norm.
Line					Compnd%
YL	50.90	63.93	Y	50.90	50.90
Eu L	49.10	36.07	Eu	49.10	49.10
Total	100.00	100.00		100.00	100.00

Table. S1 EDX quantitative results for Eu/Y ratio of 1

Table. S2 EDX quantitative results for Eu/Y ratio of 2 $\,$

Element	Weight %	Atom %	Formula	Compnd %	Norm.
Line					Compnd%
YL	41.13	54.43	Y	41.13	41.13
Eu L	58.87	45.57	Eu	58.87	58.87
Total	100.00	100.00		100.00	100.00

Table. S3 Selected bonds distances (\AA) and bond angles for 1

Eu(1)-O(1)#1	2.272(3)	Eu(3)-O(18)	2.362(3)
Eu(1)-O(16)#1	2.302(3)	Eu(3)-O(6W)	2.370(3)
Eu(1)-O(10)	2.368(3)	Eu(3)-O(3W)	2.388(3)
Eu(1)-O(11)	2.398(3)	Eu(3)-O(9)	2.392(3)

Eu(1)-O(5W)	2.411(3)	Eu(3)-O(17)#4	2.430(3)
Eu(1)-O(5)	2.428(3)	Eu(3)-O(12)	2.455(3)
Eu(1)-O(2W)	2.431(3)	O(1)-Y(1)#5	2.272(3)
Eu(1)-O(7)	2.458(3)	O(1)-Eu(1)#5	2.272(3)
Eu(2)-O(3)	2.278(3)	O(4)-Y(2)#2	2.297(3)
Eu(2)-O(4)#2	2.297(3)	O(4)-Eu(2)#2	2.297(3)
Eu(2)-O(6)	2.381(3)	O(16)-Y(1)#5	2.302(3)
Eu(2)-O(20)	2.398(3)	O(16)-Eu(1)#5	2.302(3)
Eu(2)-O(4W)	2.406(3)	O(17)-Y(3)#4	2.430(3)
Eu(2)-O(1W)	2.422(3)	O(17)-Eu(3)#4	2.430(3)
Eu(2)-O(19)#3	2.428(3)	O(19)-Y(2)#3	2.428(3)
Eu(3)-O(2)	2.298(3)	O(19)-Eu(2)#3	2.428(3)
Eu(3)-O(15)	2.316(3)		
O(1)#1-Eu(1)-O(16)#1	103.71(13)	O(4W)-Eu(2)-O(1W)	130.51(11)
O(1)#1-Eu(1)-O(10)	140.72(11)	O(3)-Eu(2)-O(19)#3	143.35(10)
O(16)#1-Eu(1)-O(10)	78.82(11)	O(4)#2-Eu(2)-O(19)#3	76.11(12)
O(1)#1-Eu(1)-O(11)	151.54(11)	O(6)-Eu(2)-O(19)#3	80.65(10)
O(16)#1-Eu(1)-O(11)	79.87(12)	O(20)-Eu(2)-O(19)#3	67.16(9)
O(10)-Eu(1)-O(11)	67.71(10)	O(4W)-Eu(2)-O(19)#3	70.92(10)
O(1)#1-Eu(1)-O(5W)	70.85(12)	O(1W)-Eu(2)-O(19)#3	136.49(9)
O(16)#1-Eu(1)-O(5W)	78.71(12)	O(3)-Eu(2)-O(8)	82.53(11)
O(10)-Eu(1)-O(5W)	71.34(11)	O(4)#2-Eu(2)-O(8)	138.13(10)
O(11)-Eu(1)-O(5W)	136.58(11)	O(6)-Eu(2)-O(8)	66.59(10)
O(1)#1-Eu(1)-O(5)	87.61(12)	O(20)-Eu(2)-O(8)	73.57(10)
O(16)#1-Eu(1)-O(5)	139.71(11)	O(4W)-Eu(2)-O(8)	140.20(10)
O(10)-Eu(1)-O(5)	116.08(10)	O(1W)-Eu(2)-O(8)	70.04(10)
O(11)-Eu(1)-O(5)	73.20(10)	O(19)#3-Eu(2)-O(8)	120.80(11)
O(5W)-Eu(1)-O(5)	140.63(11)	O(2)-Eu(3)-O(15)	106.79(13)
O(1)#1-Eu(1)-O(2W)	77.48(11)	O(2)-Eu(3)-O(18)	134.47(10)
O(16)#1-Eu(1)-O(2W)	73.41(10)	O(15)-Eu(3)-O(18)	80.15(12)
O(10)-Eu(1)-O(2W)	137.88(10)	O(2)-Eu(3)-O(6W)	148.79(11)
O(11)-Eu(1)-O(2W)	76.61(10)	O(15)-Eu(3)-O(6W)	86.18(12)
O(5W)-Eu(1)-O(2W)	130.86(10)	O(18)-Eu(3)-O(6W)	74.85(10)
O(5)-Eu(1)-O(2W)	71.60(9)	O(2)-Eu(3)-O(3W)	77.70(11)
O(1)#1-Eu(1)-O(7)	81.76(11)	O(15)-Eu(3)-O(3W)	75.30(12)
O(16)#1-Eu(1)-O(7)	152.41(10)	O(18)-Eu(3)-O(3W)	144.66(11)
O(10)-Eu(1)-O(7)	80.23(10)	O(6W)-Eu(3)-O(3W)	78.48(11)
O(11)-Eu(1)-O(7)	108.33(10)	O(2)-Eu(3)-O(9)	78.25(12)
O(5W)-Eu(1)-O(7)	77.69(11)	O(15)-Eu(3)-O(9)	147.49(11)
O(5)-Eu(1)-O(7)	66.60(9)	O(18)-Eu(3)-O(9)	74.58(11)
O(2W)-Eu(1)-O(7)	133.72(10)	O(6W)-Eu(3)-O(9)	106.17(12)
O(3)-Eu(2)-O(4)#2	106.21(13)	O(3W)-Eu(3)-O(9)	136.00(11)
O(3)-Eu(2)-O(6)	84.67(12)	O(2)-Eu(3)-O(17)#4	70.98(10)
O(4)#2-Eu(2)-O(6)	153.09(11)	O(15)-Eu(3)-O(17)#4	72.78(11)

O(3)-Eu(2)-O(20)	149.31(11)	O(18)-Eu(3)-O(17)#4	68.51(9)
O(4)#2-Eu(2)-O(20)	80.76(11)	O(6W)-Eu(3)-O(17)#4	140.11(10)
O(6)-Eu(2)-O(20)	102.59(11)	O(3W)-Eu(3)-O(17)#4	125.52(10)
O(3)-Eu(2)-O(4W)	73.52(11)	O(9)-Eu(3)-O(17)#4	79.08(10)
O(4)#2-Eu(2)-O(4W)	79.99(11)	O(2)-Eu(3)-O(12)	76.04(10)
O(6)-Eu(2)-O(4W)	79.73(11)	O(15)-Eu(3)-O(12)	145.43(11)
O(20)-Eu(2)-O(4W)	136.90(10)	O(18)-Eu(3)-O(12)	123.21(10)
O(3)-Eu(2)-O(1W)	75.54(10)	O(6W)-Eu(3)-O(12)	77.54(10)
O(4)#2-Eu(2)-O(1W)	72.79(11)	O(3W)-Eu(3)-O(12)	71.70(10)
O(6)-Eu(2)-O(1W)	134.13(10)	O(9)-Eu(3)-O(12)	67.03(10)
O(20)-Eu(2)-O(1W)	78.35(10)	O(17)#4-Eu(3)-O(12)	136.57(10)

Symmetry transformations used to generate equivalent atoms:

#1 x+1,y,z; #2 -x-1,-y,-z; #3 -x-2,-y,-z; #4 -x-2,-y-1,-z-1; #5 x-1,y,z

Eu(1)-O(1H)#1	2.236(2)	Eu(1)-Eu(1)#1	3.9135(3)
Eu(1)-O(1H)	2.254(2)	O(1)-Y(1)#5	2.410(2)
Eu(1)-O(1)#2	2.410(2)	O(1)-Eu(1)#5	2.410(2)
Eu(1)-O(4)#3	2.425(2)	O(2)-Y(1)#5	2.426(3)
Eu(1)-O(2)#2	2.426(3)	O(2)-Eu(1)#5	2.426(3)
Eu(1)-O(3)	2.457(2)	O(3)-Y(1)#1	2.461(2)
Eu(1)-O(3)#4	2.461(2)	O(3)-Eu(1)#1	2.461(2)
Eu(1)-N(1)	2.575(3)	O(4)-Y(1)#6	2.425(2)
Eu(1)-Y(1)#1	3.9135(3)	O(4)-Eu(1)#6	2.425(2)
O(1H)#1-Eu(1)-O(1H)	145.37 (5)	O(2)#2-Eu(1)-O(3)	74.26(8)
O(1H)#1-Eu(1)-O(1)#2	96.33(9)	O(1H)#1-Eu(1)-O(3)#4	142.45(7)
O(1H)-Eu(1)-O(1)#2	111.57(9)	O(1H)-Eu(1)-O(3)#4	66.43(7)
O(1H)#1-Eu(1)-O(4)#3	76.80(7)	O(1)#2-Eu(1)-O(3)#4	78.25(8)
O(1H)-Eu(1)-O(4)#3	129.37(7)	O(4)#3-Eu(1)-O(3)#4	65.93(6)
O(1)#2-Eu(1)-O(4)#3	74.07(8)	O(2)#2-Eu(1)-O(3)#4	110.01(8)
O(1H)#1-Eu(1)-O(2)#2	95.22(8)	O(3)-Eu(1)-O(3)#4	145.74(5)
O(1H)-Eu(1)-O(2)#2	85.78(8)	O(1H)#1-Eu(1)-N(1)	82.73(8)
O(1)#2-Eu(1)-O(2)#2	53.83(9)	O(1H)-Eu(1)-N(1)	80.93(8)
O(4)#3-Eu(1)-O(2)#2	126.28(8)	O(1)#2-Eu(1)-N(1)	153.61(9)
O(1H)#1-Eu(1)-O(3)	66.77(7)	O(4)#3-Eu(1)-N(1)	80.09(8)
O(1H)-Eu(1)-O(3)	80.39(7)	O(2)#2-Eu(1)-N(1)	152.54(9)
O(1)#2-Eu(1)-O(3)	124.12(8)	O(3)-Eu(1)-N(1)	79.87(8)
O(4)#3-Eu(1)-O(3)	140.16(6)	O(3)#4-Eu(1)-N(1)	86.49(7)

Table. S4 Selected bonds distances (Å) for 2

Symmetry transformations used to generate equivalent atoms:

#1 x+1/2,-y+1/2,-z+1; #2 -x+1/2,y+1/2,z; #3 -x+1/2,-y+1/2,z-1/2; #4 x-1/2,-y+1/2,-z+1; #5 -x+1/2,y-1/2,z; #6 -x+1/2,-y+1/2,z+1/2; #7 -x+1,y,z+3/2

D—H…A	d(DH)/Å	d(HA)/Å	d(DA)/Å	∠D—H…A/(°)
O1WH1WAN1	0.83(3)	1.84(3)	2.666(5)	169(3)
O1WH1WBO12	0.840(19)	2.128(19)	2.865(4)	146(3)
O2WH2WAN2	0.85(2)	1.84(2)	2.680(5)	170(2)
O2WH2WBO19	0.842(16)	2.122(19)	2.940(4)	164(4)
O3WH3WAO8	0.83(3)	2.00(3)	2.794(4)	161(3)
O3WH3WBO2W	0.83(3)	2.10(3)	2.889(5)	161(3)
O4WH4WAO5	0.85(3)	1.96(3)	2.801(4)	169(3)
O4WH4WBO1W	0.84(4)	2.14(4)	2.942(5)	160(3)
O5WH5WAO7W	0.84(3)	2.03(4)	2.670(9)	133(4)
O5WH5WBO17	0.85(3)	2.05(4)	2.871(5)	163(4)
O6WH6WAO7	0.83(3)	2.30(3)	3.116(4)	170(5)
O6WH6WBN3	0.84(2)	1.91(3)	2.717(6)	161(4)
O7WH7WAO9	0.881(16)	2.373(16)	2.888(9)	117.5(16)
O7WH7WBO9	0.89(4)	2.39(3)	2.888(9)	116(2)
O7WH7WBO18	0.89(4)	2.59(4)	3.350(11)	144(5)
С5Н5АО11	0.93	2.58	3.349(5)	140.00

Table. S5 Hydrogen bonds in the title compound 1

Fig. S4 The IR spectra of compound 1.

Fig. S6 The TG curve of compound 1.

Fig. S7 The TG curve of compound 2.