Electronic Supplementary Information

Dual modes of binding on hexafluorosilicate anion by a C₃v symmetric flexible tripodal amide ligand in solid state

Arghya Basu, Romen Chutia, and Gopal Das*

Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781 03, India,. Fax: +91-361-258-2349; Tel: +91-361-258-2313

E-mail: gdas@iitg.ernet.in

Characterizations of the complexes:

Fig. S1. ¹H NMR spectrum of complex 1a in DMSO- d_6 at 298 K.

Fig. S2 FT-IR spectrum of complex 1a recorded in KBr pellet.

Fig. S3 ¹H NMR spectrum of complex **1b** in DMSO- d_6 at 298 K

Fig. S4 FT-IR spectrum of complex 1b recorded in KBr pellet.

Fig. S5 Optical micrograph images of crystals (a) Complex 1a and (b) Complex 1b.

Fig. S6 Comparison of the length of the capsules (a) Chloride complex (b) Bromide complex and (c) Hexafluorosilicate complex (1a).

Fig. S7. (a) Powder X-ray diffraction: simulated pattern from the single–crystal X-ray of complex **1a** (red), experimental pattern from the crystalline solid of complex **1a** (black); (b) Powder X-ray diffraction: simulated pattern from the single–crystal X-ray of complex **1b** (red), experimental pattern from the crystalline solid of complex **1b** (black);

Fig. S8 Conformations of the receptors are in the hexafluorosilicate complexes. All of the counter anions and solvent molecules have been omitted for clarity. (a) Perfect C_3 symmetric conformation seen in complex 1a; (b) Distorted C_3 symmetric conformation seen in complex 1b.