Supporting information

Polyrotaxane-like metal-organic framework showing luminescent sensing of Eu³⁺ cation and proton conductivity

Bai-Qiao Song, Xin-Long Wang,* Guang-Sheng Yang, Hai-Ning Wang, Jun Liang, Kui-Zhan Shao and Zhong-Min Su*

Institute of Functional Material Chemistry; Key Laboratory of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun, 130024 Jilin, People's Republic of China ; E-mail: wangxl824@nenu.edu.cn, zmsu@nenu.edu.cn

Bond lengths (Å)						
Cd(1)-O(4)	2.246(3)	Cd(1)-O(12)#1	2.558(3)			
Cd(1)-O(13)#1	2.270(3)	Cd(2)-O(15)#2	2.303(3)			
Cd(1)-O(5)	2.387(3)	Cd(2)-O(7)	2.359(3)			
Cd(1)-O(6)	2.415(3)	Cd(2)-O(8)	2.171(3)			
Cd(1)-O(1)	2.419(4)	Cd(2)-O(11)#2	2.428(3)			
Cd(1)-O(14)	2.541(3)					
Bond angles (°)						
O(4)-Cd(1)-O(13)#3	133.19(13)	O(1)-Cd(1)-O(14)	80.16(15)			
O(4)-Cd(1)-O(5)	96.31(13)	O(6)-Cd(1)-O(14)	86.00(11)			
O(13)#3-Cd(1)-O(5)	92.56(14)	O(4)-Cd(1)-O(12)#3	80.49(11)			
O(4)-Cd(1)-O(1)	115.14(15)	O(13)#3-Cd(1)-O(12)#3	53.29(12)			
O(13)#3-Cd(1)-O(1)	90.43(15)	O(5)-Cd(1)-O(12)#3	91.83(12)			
O(5)-Cd(1)-O(1)	132.66(13)	O(1)-Cd(1)-O(12)#3	126.13(14)			
O(4)-Cd(1)-O(6)	130.68(11)	O(6)-Cd(1)-O(12)#3	131.62(11)			
O(13)#3-Cd(1)-O(6)	90.95(12)	O(14)-Cd(1)-O(12)#3	134.17(11)			
O(5)-Cd(1)-O(6)	54.33(10)	O(8)-Cd(2)-O(7)	80.88(14)			
O(1)-Cd(1)-O(6)	78.40(13)	O(15)#4-Cd(2)-O(7)	85.42(13)			
O(4)-Cd(1)-O(14)	53.68(12)	O(8)-Cd(2)-O(11)#4	105.03(14)			
O(13)#3-Cd(1)-O(14)	170.51(14)	O(15)#4-Cd(2)-O(11)#4	55.56(13)			
O(5)-Cd(1)-O(14)	92.95(15)	O(7)-Cd(2)-O(11)#4	138.37(13)			

Table S1. Selected bond lengths (Å) and bond angles (°)

Symmetry transformations used to generate equivalent atoms: #1=x,-y+2,z-1/2;#2 = x,-y-1,z-1/2; #3 = x,-y+2,z+1/2; #4=x,-y-1,z+1/2;

Fig. S1 a) and b) The loop-like chains are bridged by L^{-} to form a 2D infinite bow-shaped (6,3) layer. C) schematic representation of the 2D infinite bow-shaped (6,3) layer.

Fig. S2 The strong hydrogen bonding (C-H···O = 3.015-3.068 Å) between the oxygen atoms belong to the [Cd₆L₆] 6-membered ring from one 3-fold interpenetration network and the highly acidic methylene hydrogen of the imidazolium moiety of the ligand rod from another 3-fold interpenetration network.

(b)

Fig. S3 (a) The interdigitated model in **1**. (b) The strong hydrogen bonding (C-H···O = 2.345-2.630 Å) in the interdigitated model in **1**.

Fig. S4 Infrared spectrum of fresh **1**, MeOH-exchanged (**1a**), activated (**1b**), **1** in water (**1c**), and **Eu@1** (**1d**). The broad peak at 3421 cm⁻¹ in the IR spectrum of **1** indicates the presence of water molecules in the structure. Sharp peaks at 1658 and 1610 cm⁻¹ ascribe to CO stretching vibrations of the free and coordinated dimethylformamide molecules, respectively, inside the channels. Another sharp peak at 1388 cm⁻¹ appears due to the presence of coordinated nitrate anions. The complete removal of the free DMF and H₂O molecules was verified by the disappearance of the vibration at 1658 cm⁻¹ and 3421 cm⁻¹ in **1a** and **1b**, respectively. Interestingly, when fresh samples of **1** were immersed in 0.3 mol / L DMF solution of Eu(NO₃)₃ for 5 days to get **Eu@1**, the IR spectrum of **Eu@1** shows scarcely any free DMF and H₂O molecules in it.

Fig. S5 PXRD profiles of as-synthesized (1), MeOH-exchanged (1a), activated (1b), and resolvated samples.

Fig. S6 PXRD profiles of as-synthesized samples and the as-synthesized samples in water under different conditions.

Fig. S7 The phase transformation during different process.

Fig. S8 (a) TGA curves of compound 1, MeOH-exchanged samples (1a), and activated samples of 1b. (b) TGA curves of compound 1 and samples of Eu@1 (1d).

Fig. S9 Eu 3d, Sm 3d, Tb 4d XPS spectra for 1-Eu, 1-Sm, 1-Tb, respectively. $1-Ln^{3+}$ represents the samples which were immersed in 0.3 mol / L DMF solution of nitrate salts of Ln^{3+} cations for 5 days. In the XPS spectrum of 1-Eu, the peaks at 1135.2 eV and 1165.1 eV are assigned to the Eu 3d5/2 and Eu 3d3/2, respectively. But for 1-Sm and 1-Tb, no peaks for Sm 3d and Tb 4d are found.

ICP	1-Eu	1-Tb	1-Sm	1-Dy		
Cd	19.81%	20.97%	20.95%	21.00%		
Ln	2.95%	0	0	0		
Ln:Cd(wt:wt)	0.15:1	0	0	0		
Ln:Cd(molar:molar)	0.11:1	0	0	0		

Table S2. ICP analysis for the samples which were immersed in 0.3 mol / L DMF solution of nitrate salts of Ln^{3+} cations for 5 days

1-Ln³⁺ represents the samples which were immersed in 0.3 mol / L DMF solution of nitrate salts of Ln^{3+} cations for 5 days.

Fig. S10 PXRD profiles of as-synthesized samples and 1-Ln samples which were soaked in 0.3 mol / L DMF solution of nitrate salts of Ln^{3+} cations for 5 days.

Fig. S11 PXRD profiles of MeOH-exchanged (1a) samples, desolvated samples (1b), samples of 1a or 1b in water, samples of Eu@1 (1d), and samples of 1d in water.

(b)

Fig. S12 (a) Solid-state photoluminescent spectra of $H_2L^+Cl^-$ ($\lambda_{ex} = 340$ nm and $\lambda_{em} = 420$ nm). (b) Solid-state photoluminescent spectra of **1** ($\lambda_{ex} = 340$ nm and $\lambda_{em} = 438$ nm). (c) The visible emission spectra of **Eu@ 1** with $\lambda_{ex} = 340$ nm in DMF.

(b)

Fig. S13 Some of the Nyquist plots for **1** at 298 K under different relative humidity (a) 40 % (b) 98 %.