Toward Low-sensitive and High-energetic Cocrystal II: Structural, Electronic and Energetic Features of CL-20 Polymorphs and the Observed CL-20-based Energetic-energetic Cocrystals

Chaoyang Zhang,[†]* Xianggui Xue,[†] Yaofeng Cao,^{†‡} Junhong Zhou,^s Anbang Zhang,[†] Hongzhen, Li,[†] Yang Zhou,[†] Ruijuan Xu,[†] and Tao Gao[‡]

[†]Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), P. O. Box 919-327, Mianyang, Sichuan 621900, China.

[‡]Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, Sichuan 610065, China.

^s Shanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai 200032, China.

Electronic supplementary information (ESI)

Table of Contents

S1. Crystal packing of three CL-20-based EECCs.

S2. Relative energy of three formed conformers of CL-20 is gaseous state and solutions.

S3. Dihedrals in β -CL-20, CL-20/TNT, CL-20/HMX and CL-20/BTF.

S4. Crystal packing of TATB.

S1. Crystal packing of three CL-20-based EECCs.

Figure s1. Crystal packing of three CL-20-based EECCs. In the bottom arrow, two kinds of energetic molecules are distinguished by different colors.

S2. Relative energy of three formed conformers of CL-20 is gaseous state and solutions.

The geometries of α (γ), β , and ε -formed CL-20 conformations in gaseous state and solvents and all solvent molecules were fully optimized at the B3LYP/6-311++G** level of density functional theory.

Figure s2. Relative energies of three interested CL-20 conformations in the ten solvents to the ε -formed one in gaseous state, dielectric constants (ε) and dipole moments (D) of the solvents. Ten solvents with a large range of dielectric constants (ε) within 1.92-78.39, heptane (HE), cyclohexane (CH), carbontetrachloride (TCM), benzene (BEN), toluene (TOL), acetic ether (AE), dichloromethane (DCM), dichloroethane (DCE), acetone (ACE) and water (W).

S3. Dihedrals in β -CL-20, CL-20/TNT, CL-20/HMX and CL-20/BTF.

	β-CL-20	CL-20/TNT	CL-20/HMX	CL-20/BTF
C27-N17-N18-O5	-23.7	-38.9	-15.3 (γ)/(β)	19.1
C30-N13-N14-O1	-26.3	-15.7	20.1	21.3
C27-N19-N20-O7	-15.1	-17.3	22.9	17.7
C30-N23-N24-O12	-28.1	-33.0	24.7	16.8

Table s1. Dihedrals in β -CL-20, CL-20/TNT, CL-20/HMX and CL-20/BTF.

Figure s3. Atomic numbering of β -CL-20.

S4. Crystal packing of TATB.

Figure s4. Layered crystal packing of TATB (left) and hydrogen bonds in a layer represented by dash (right).