Electronic Supplementary Information

Alkaline cations directed structural diversity of cubic-cage-based cobalt(II) metal-organic frameworks: from *pcu* to *bct* net

Ji-Yong Zou,^{*a,b*} Wei Shi,**^a* Jing-Ya Zhang,^{*a*} Yan-Fei He,^{*a*} Hong-Ling Gao,^{*b*} Jian-Zhong Cui^{*b*} and Peng Cheng*^{*a*}

^a Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (MOE), and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, P. R. China

^b Department of Chemistry, Tianjin University, Tianjin 300072, P. R. China

1. Thermogravimetric analysis

Fig. S1. The thermal gravimetric analysis (TGA) data of 1-3.

The TGA curve shows a weight loss of 14.33% for 1 during the first major step before 250 °C, corresponding to the removal of twenty uncoordinated water molecules and six coordinated water molecules (Calculated: 14.23%). After the losses of all water molecules, no weight loss is observed, indicating the decomposition of 1. The TGA curve shows a weight loss of 15.27% for 2 during the first major step before 145 °C, corresponding to the removal of twenty-five uncoordinated water molecules (Calculated: 15.13%). After the losses of all uncoordinated water molecules, another weight loss of 2.92% is observed at 240 °C, corresponding to the removal of six coordinated water molecules (Calculated: 3.63%). The framework is stable up to 340 °C until decomposition. The TGA curve shows a weight loss of 16.55% for 3 during the first major step before 235 °C, corresponding to the removal of twenty-six uncoordinated water molecules and two coordinated water molecules (Calculated: 16.27%). After the losses of all water molecules, no weight loss is observed, indicating the decomposition of 3

2. Power X-Ray diffraction

Fig. S2. Comparison of the experimental PXRD pattern of as-synthesized **1** with the one simulated from its single crystal structure (top); Room temperature X-ray diffraction pattern of of **1** fitted using the Pawley method (bottom).

Fig. S3. Comparison of the experimental PXRD pattern of as-synthesized **2** with the one simulated from its single crystal structure (top); Room temperature X-ray diffraction pattern of **2** fitted using the Pawley method (bottom).

Fig. S4. Comparison of the experimental PXRD pattern of as-synthesized **3** with the one simulated from its single crystal structure.

3. Magnetism Measurements

Fig. S5. Field dependence of magnetizations for 1 at 2 K

Fig. S6. Field dependence of magnetizations for 2 at 2 K.

Fig. S7. Field dependence of magnetizations for 3 at 2 K.

4. BVS Calculations

The bond valence sum (BVS) calculations have been carried out based on BVS model.¹

Bond type	Bond distance / Å	Bond valence	Bond valence sum
$C_{-}(1) O(1) \# 1$	2.01((2))	I 0.400	$2.200 f_{\rm cm} C_{\rm c}$
$C_0(1) - O(1) \# 1$ $C_2(1) - O(1) \# 2$	2.016(3)	0.409	2.298 IOF CO1
$C_0(1) - O(1) + 2$ $C_0(1) - O(1)$	2.010(3) 2.016(3)	0.409	
$C_0(1) - O(1)$ $C_0(1) N(1) \# 1$	2.010(3) 2.021(4)	0.409	
$C_0(1) = N(1) \# 1$ $C_0(1) = N(1) \# 2$	2.031(4) 2.031(4)	0.357	
$C_0(1) - N(1) = 0$	2.031(4) 2.031(4)	0.357	
$C_0(2) - O(8) \# 3$	1 996(4)	0.431	2 421 for Co2
Co(2) - N(4)	2.004(4)	0 384	2.121 101 002
Co(2)-N(3)	1.997(4)	0.391	
Co(2)-O(4)	2.004(3)	0.422	
Co(2)-N(6)#3	2.016(5)	0.372	
Co(2)-O(5)	2.006(4)	0.420	
Co(3)-O(9) #4	2.048(3)	0.374	2.243 for Co3
Co(3)-O(9) #5	2.048(3)	0.374	
Co(3)-O(9) #6	2.048(3)	0.374	
Co(3)-O(9) #7	2.048(3)	0.374	
Co(3)-O(9) #8	2.048(3)	0.374	
Co(3)-O(9)	2.048(3)	0.374	
		2	
Co(1)-O(1)	2.010(3)	0.415	2.332 for Co1
Co(1)-O(1)#1	2.010(3)	0.415	
Co(1)-O(1)#2	2.010(3)	0.415	
Co(1)-N(1)#1	2.026(4)	0.362	
Co(1)-N(1)#2	2.026(4)	0.362	
Co(1)-N(1)	2.026(4)	0.362	
Co(2)-O(5)	2.002(4)	0.425	2.334 for Co2
Co(2)-O(4)	2.016(3)	0.409	
Co(2)-O(8)#3	2.016(4)	0.409	
Co(2)-N(6)#3	2.019(5)	0.369	
Co(2)-N(4)	2.025(5)	0.363	
Co(2)-N(3)	2.028(4)	0.360	
Co(3)-O(9)	2.062(3)	0.361	2.166 for Co3
Co(3)-O(9)#5	2.062(3)	0.361	
Co(3)-O(9)#6	2.062(3)	0.361	
Co(3)-O(9)#4	2.062(3)	0.361	
Co(3)-O(9)#7	2.062(3)	0.361	
Co(3)-O(9)#8	2.062(3)	0.361	
		3	
Co(1)-N(3)	1.976(6)	0.414	2.477 for Co1
Co(1)-O(4)	1.984(5)	0.446	

Table S1. Bond valence values for cobalt centers in 1-3.

Co(1)-O(5)	1.992(5)	0.436	
Co(1)-N(7)	1.987(7)	0.402	
Co(1)-O(9)	2.017(5)	0.408	
Co(1)-N(4)	2.017(6)	0.371	
Co(2)-N(18)#2	1.988(6)	0.401	2.389 for Co2
Co(2)-O(2)#2	2.004(5)	0.422	
Co(2)-N(1)#2	2.007(6)	0.381	
Co(2)-O(24)#2	2.011(5)	0.414	
Co(2)-O(16)	2.013(4)	0.412	
Co(2)-N(12)	2.030(5)	0.358	
Co(3)-N(9)	1.988(7)	0.401	2.393 for Co3
Co(3)-O(17)	2.002(6)	0.425	
Co(3)-O(13)	2.010(5)	0.415	
Co(3)-N(10)	2.009(5)	0.379	
Co(3)-O(12)	2.022(5)	0.402	
Co(3)-N(13)	2.017(6)	0.371	
Co(4)-O(20)	1.971(7)	0.462	2.447 for Co4
Co(4)-N(16)	1.996(7)	0.393	
Co(4)-O(21)	1.998(5)	0.429	
Co(4)-N(15)	2.013(6)	0.375	
Co(4)-N(6)#2	2.005(7)	0.383	
Co(4)-O(7)#2	2.019(5)	0.405	

Symmetry transformations used to generate equivalent atoms:

For 1: #1: -x+y+1,-x+2,z, #2: -y+2,x-y+1,z, #3: y,x-y+1,-z+1, #4: x-y,x,-z+1, #5: -x+y,-x,z #6:

-y,x-y,z, #7: y,-x+y,-z+1, #8: -x,-y,-z+1, #9: x-y+2/3,-y+4/3,-z+5/6;

For **2**: #1: -x+y+1,-x+2,z, #2: -y+2,x-y+1,z, #3: y,-x+y+1,-z+1, #4: x-y,x,-z+1, #5: -x+y,-x,z,

#6: -y,x-y,z, #7: y,-x+y,-z+1, #8: -x,-y,-z+1, #9: x-y+2/3,-y+4/3,-z+5/6;

For **3**: #1: -x+1,y,-z+1/2, #2: -x+3/2,-y+3/2,-z+1.

5. X-ray Photoelectron Spectroscopy

Fig. S8. (a) X-ray photoelectron spectroscopy (XPS) of 1; (b) XPS of the Co 2*p* level in 1.

Fig. S9. (a) X-ray photoelectron spectroscopy (XPS) of **2**; (b) XPS of the Co 2*p* level in **2**.

Fig. S10. (a) X-ray photoelectron spectroscopy (XPS) of 3; (b) XPS of the Co 2p level in 3.

The characteristic peaks of $\text{Co}^{3+}2\text{P}_{3/2}$ level of 779.2-779.6 ev with 15.1 eV splitting in **1-3** are not observed.² Instead, the Co2p spectrum with shake-up levels agreed well with the known Co²⁺ complexes.³ These results indicate that all cobalt ions are divalent in **1-3**.

1. I. D. Brown, *The Chemical Bond in Inorganic Chemistry: The Bond Valence Model*, published by Oxford University Press, 2002, database available at http://www.iucr.org/resources/data/data-sets/bond-valence-parameters

2. S. H. Xiang, X. T. Wu, J. J. Zhang, R. B. Fu, S. M. Hu and X. D. Zhang, *J. Am. Chem. Soc.*, 2005, **127**, 16352.

(a) J. H. Burness, J. G. Dillard and L. T. Taylor, *J. Am. Chem. Soc.*, 1975, 6080; (b) J. Y.
Zou, W. Shi, N. Xu, L. L. Li, J. K. Tang, H. L. Gao, J. Z. Cui and P. Cheng, *Chem. Commun.*, 2013, 49, 8226.