Electronic Supplementary Information

N-salicylidene aniline derivatives based on the *N'*-thiophosphorylated thiourea scaffold

Damir A. Safin,^{*a} Maria G. Babashkina,^a Koen Robeyns,^a Michael Bolte^b and Yann Garcia^{*a}

 ^a Institute of Condensed Matter and Nanosciences, Molecules, Solids and Reactivity (IMCN/MOST), Université Catholique de Louvain, Place L. Pasteur 1, 1348 Louvain-la-Neuve, Belgium. Fax: +32(0) 1047
2330; Tel: +32(0) 1047 2831; E-mail: damir.a.safin@gmail.com, yann.garcia@uclouvain.be
^b Institut für Anorganische Chemie J.-W.-Goethe-Universität, Frankfurt/Main, Germany

Fig. S1 Calculated and experimental X-ray powder diffraction patterns of 1 and 2.

Fig. S2 Calculated and experimental X-ray powder diffraction patterns of 3 and 4.

Fig. S3 Calculated and experimental X-ray powder diffraction patterns of 5 and 6.

Bond lengths					
S(1)–P(1)	1.917(4)	P(1)–N(1)	1.674(7)	N(2)–C(1)	1.339(11)
S(2)–C(1)	1.679(10)	N(1)-C(1)	1.369(11)	N(2)–C(11)	1.426(11)
Bond angles					
S(1)–P(1)–N(1)	117.2(3)	C(1)–N(2)–C(11)	131.7(8)	S(2)-C(1)-N(2)	120.9(7)
P(1)-N(1)-C(1)	126.2(6)	S(2)-C(1)-N(1)	122.8(7)	N(1)-C(1)-N(2)	116.2(8)
Torsion angles					
S(1)-P(1)-N(1)-C(1)	-61.0(9)	N(2)-C(1)-N(1)-P(1)	173.1(7)	N(1)-C(1)-N(2)-C(11)	-3.1(16)
S(2)-C(1)-N(1)-P(1)	-5.8(13)	S(2)-C(1)-N(2)-C(11)	175.8(8)		

Table S1 Selected bond lengths (Å) and bond angles (°) for 1 $\,$

Table S2 Selected bond lengths (Å) and bond angles (°) for ${\bf 2}$

Bond lengths					
S(1)–P(1)	1.9276(11)	N(1)–C(1)	1.360(4)	N(3)–C(8)	1.296(4)
S(2)–C(1)	1.675(3)	N(2)–C(1)	1.366(4)	O(3)–C(22)	1.346(4)
P(1)–N(1)	1.678(3)	N(2)–C(11)	1.407(4)	C(8)–C(21)	1.452(4)
Bond angles					
S(1)–P(1)–N(1)	119.03(9)	C(1)–N(2)–C(11)	130.6(3)	S(2)-C(1)-N(2)	119.6(2)
P(1)-N(1)-C(1)	126.5(2)	S(2)–C(1)–N(1)	124.4(2)	N(1)-C(1)-N(2)	116.0(2)
Torsion angles					
S(1)-P(1)-N(1)-C(1)	-67.4(2)	S(2)-C(1)-N(2)-C(11)	-171.2(2)	C(14)-C(13)-N(3)-C(8)	19.9(4)
S(2)-C(1)-N(1)-P(1)	6.5(4)	N(1)-C(1)-N(2)-C(11)	8.4(4)	N(3)-C(8)-C(21)-C(22)	-0.8(4)
N(2)-C(1)-N(1)-P(1)	-173.07(18)	N(12)-C(13)-N(3)-C(8)	-162.7(3)	N(3)-C(8)-C(21)-C(26)	179.2(3)

Table S3 Selected bond lengths (Å) and bond angles (°) for ${\bf 3}$

Bond lengths					
S(1)–P(1)	1.9259(10)	N(1)–C(1)	1.357(3)	N(3)–C(8)	1.277(3)
S(2)–C(1)	1.672(3)	N(2)–C(1)	1.358(3)	O(3)–C(22)	1.347(4)
P(1)–N(1)	1.685(2)	N(2)–C(11)	1.401(3)	C(8)–C(21)	1.457(4)
Bond angles					
S(1)–P(1)–N(1)	107.08(8)	C(1)-N(2)-C(11)	131.7(2)	S(2)–C(1)–N(2)	119.74(19)
P(1)-N(1)-C(1)	129.76(17)	S(2)-C(1)-N(1)	123.60(18)	N(1)-C(1)-N(2)	116.7(2)
Torsion angles					
S(1)-P(1)-N(1)-C(1)	178.1(2)	S(2)-C(1)-N(2)-C(11)	-179.7(2)	C(14)-C(13)-N(3)-C(8)	-172.1(3)
S(2)-C(1)-N(1)-P(1)	4.9(4)	N(1)-C(1)-N(2)-C(11)	-0.7(4)	N(3)-C(8)-C(21)-C(22)	-1.2(4)
N(2)-C(1)-N(1)-P(1)	-174.2(2)	N(12)-C(13)-N(3)-C(8)	9.0(4)	N(3)-C(8)-C(21)-C(26)	178.0(3)

Bond lengths					
S(1)–P(1)	1.9273(11)	N(1)–C(1)	1.355(4)	N(3)–C(8)	1.292(4)
S(2)–C(1)	1.674(3)	N(2)–C(1)	1.361(3)	O(3)–C(22)	1.337(4)
P(1)–N(1)	1.691(3)	N(2)–C(11)	1.398(3)	C(8)–C(21)	1.450(4)
Bond angles					
S(1)–P(1)–N(1)	107.02(9)	C(1)–N(2)–C(11)	131.2(2)	S(2)–C(1)–N(2)	119.3(2)
P(1)–N(1)–C(1)	129.47(19)	S(2)–C(1)–N(1)	123.81(19)	N(1)-C(1)-N(2)	116.9(2)
Torsion angles					
S(1)-P(1)-N(1)-C(1)	-179.8(3)	S(2)-C(1)-N(2)-C(11)	179.6(3)	C(14)-C(13)-N(3)-C(8)	173.8(3)
S(2)-C(1)-N(1)-P(1)	-1.8(4)	N(1)-C(1)-N(2)-C(11)	0.4(5)	N(3)-C(8)-C(21)-C(22)	0.9(5)
N(2)-C(1)-N(1)-P(1)	177.4(2)	N(12)-C(13)-N(3)-C(8)	-6.8(5)	N(3)-C(8)-C(21)-C(26)	-178.9(3)

Table S4 Selected bond lengths (Å) and bond angles (°) for 4

Table S5 Selected bond lengths (Å) and bond angles (°) for ${\bf 5}$

Bond lengths					
S(1)–P(1)	1.9240(10)	N(1)–C(1)	1.355(3)	N(3)–C(8)	1.282(3)
S(2)–C(1)	1.663(3)	N(2)–C(1)	1.363(3)	O(3)–C(22)	1.341(3)
P(1)–N(1)	1.682(2)	N(2)–C(11)	1.394(3)	C(8)–C(21)	1.447(4)
Bond angles					
S(1)–P(1)–N(1)	106.83(9)	C(1)–N(2)–C(11)	131.6(2)	S(2)-C(1)-N(2)	119.87(19)
P(1)-N(1)-C(1)	129.63(18)	S(2)-C(1)-N(1)	123.62(19)	N(1)-C(1)-N(2)	116.5(2)
Torsion angles					
S(1)-P(1)-N(1)-C(1)	-177.1(2)	S(2)-C(1)-N(2)-C(11)	-176.8(2)	C(14)-C(13)-N(3)-C(8)	-172.6(2)
S(2)-C(1)-N(1)-P(1)	0.5(4)	N(1)-C(1)-N(2)-C(11)	2.6(4)	N(3)-C(8)-C(21)-C(22)	-0.2(4)
N(2)-C(1)-N(1)-P(1)	-178.8(2)	N(12)-C(13)-N(3)-C(8)	7.9(4)	N(3)-C(8)-C(21)-C(26)	-177.7(2)

Table S6 Selected b	ond lengths (Å) and	bond angles (°) for 6
---------------------	---------------------	------------------------------

Bond lengths					
S(1)–P(1)	1.922(2)	N(1)–C(1)	1.367(7)	N(3)–C(8)	1.293(6)
S(2)–C(1)	1.657(6)	N(2)–C(1)	1.363(6)	O(3)–C(22)	1.330(6)
P(1)–N(1)	1.683(4)	N(2)–C(11)	1.402(7)	C(8)–C(21)	1.434(7)
Bond angles					
S(1)–P(1)–N(1)	106.82(17)	C(1)-N(2)-C(11)	132.3(5)	S(2)-C(1)-N(2)	120.0(4)
P(1)-N(1)-C(1)	128.6(4)	S(2)-C(1)-N(1)	124.2(4)	N(1)-C(1)-N(2)	115.7(5)
Torsion angles					
S(1)-P(1)-N(1)-C(1)	-179.3(5)	S(2)-C(1)-N(2)-C(11)	-177.2(5)	C(14)-C(13)-N(3)-C(8)	168.9(5)
S(2)-C(1)-N(1)-P(1)	-7.4(8)	N(1)-C(1)-N(2)-C(11)	2.2(9)	N(3)-C(8)-C(21)-C(22)	1.5(8)
N(2)-C(1)-N(1)-P(1)	173.2(4)	N(12)-C(13)-N(3)-C(8)	-10.7(7)	N(3)-C(8)-C(21)-C(26)	178.7(5)

	D–H···A	<i>d</i> (D–H)	<i>d</i> (H···A)	<i>d</i> (D····A)	∠(DHA)
1 a	N(1)-H(1N)···N(12)	0.86	1.96	2.63(2)	133
1	N(2)-H(2N)S(2)#1	0.86	2.55	3.373(15)	162
	N(1)-H(1N)····N(12)	0.88	1.95	2.653(3)	136
a h	N(2)-H(2N)····O(5) ^{#1}	0.88	2.03	2.897(4)	170
20	O(3)-H(3)····N(3)	0.84	1.88	2.619(4)	147
	O(4)–H(4)····O(5)	0.84	1.91	2.643(4)	145
	N(1)-H(1N)····N(12)	0.86	1.99	2.705(3)	139
3 ^c	$N(2)-H(2N)\cdots S(2)^{\#1}$	0.86	2.54	3.387(2)	170
	O(3)-H(3)···N(3)	0.82	1.89	2.614(3)	147
	N(1)-H(1N)····N(12)	0.88	1.97	2.698(3)	139
4^{d}	$N(2)-H(2N)\cdots S(2)^{\#1}$	0.88	2.49	3.355(3)	169
	O(3)–H(3)····N(3)	0.84	1.86	2.599(3)	147
	N(1)-H(1N)····N(12)	0.78(4)	2.04(4)	2.691(3)	141(4)
5 ^e	N(2)-H(2N)S(2)#1	0.78(3)	2.57(3)	3.343(2)	170(3)
	O(3)–H(3)····N(3)	0.82(4)	1.84(4)	2.586(3)	152(4)
(f	N(1)-H(1N)····N(12)	0.92(5)	1.91(5)	2.700(6)	143(5)
	N(2)-H(2N)S(2)#1	0.91(4)	2.50(4)	3.397(5)	174(3)
0⁄	O(3)–H(3)····N(3)	0.84(6)	1.88(8)	2.564(6)	138(6)
	O(2L)-H(1L)Br(2)	0.85	2.79	3.643(15)	180

Table S7. Hydrogen bond lengths (Å) and angles (°) for 1–6

^{*a*} Symmetry transformations used to generate equivalent atoms: #1 - x, -y, 1 - z.

^b Symmetry transformations used to generate equivalent atoms: #1 1 -x, 1 - y, 1 - z.

^{*c*} Symmetry transformations used to generate equivalent atoms: #1 - x, 1 - y, -z.

^{*d*} Symmetry transformations used to generate equivalent atoms: #1 1 - x, 1 - y, 2 - z.

^{*e*} Symmetry transformations used to generate equivalent atoms: #1 - x, 1 - y, 1 - z.

^{*f*} Symmetry transformations used to generate equivalent atoms: #1 1 - x, -y, 1 - z.

	Cg(<i>I</i>)	$Cg(J)^b$	d[Cg(I)-Cg(J)]	Cg(<i>I</i>)_Perp	Cg(J)_Perp	α	β
1^{b}	Cg(1)	Cg(1)#1	3.810(6)	3.325(4)	3.313(4)	0	29.2
	Cg(1)	Cg(1)#1	3.6646(16)	3.3435(11)	3.3435(11)	0.03	24.16
2 ^c	Cg(2)	Cg(3)#2	4.2119(17)	3.4755(13)	3.4190(9)	4.75	35.73
	Cg(2)	Cg(3)#3	3.9091(17)	3.3726(13)	3.4329(9)	4.75	28.58
2 d	Cg(1)	Cg(2)#1	3.783(2)	3.4376(12)	3.3635(14)	8.24(15)	27.3
3	Cg(2)	$Cg(1)^{\#1}$	3.784(2)	3.3635(14)	3.4376(12)	8.24(15)	24.7
4 ^e	Cg(1)	Cg(2)#1	3.643(2)	3.3303(13)	3.2840(14)	6.44(16)	25.7
5 f	Cg(1)	Cg(2)#1	3.6562(14)	3.3144(9)	3.3676(10)	7.95(11)	22.9
6 ^g	Cg(1)	$Cg(2)^{\#1}$	3.857(3)	3.344(2)	3.607(2)	11.4(3)	20.7

Table S8. π ... π bond lengths (Å) and angles (°) for 1–6^{*a*}

^{*a*} Cg(*I*)–Cg(*J*): distance between ring centroids; Cg(*I*)_Perp: perpendicular distance of Cg(*I*) on ring J; Cg(*J*)_Perp: perpendicular distance of Cg(*J*) on ring I; α : dihedral angle between planes Cg(*I*) and Cg(*J*); β : angle Cg(*I*) \rightarrow Cg(*J*) vector and normal to plane I. Cg(1): N(12)–C(11)–C(16)–C(15)–C(14)–C(13); Cg(2): C(21)–C(22)–C(23)–C(24)–C(25)–C(26).

^b Symmetry transformations used to generate equivalent atoms: #1 x, 1/2 - y, -1/2 + z.

^c Symmetry transformations used to generate equivalent atoms: #1 - x, 1 - y, 2 - z; #2 - 1 + x, y, 1 + z; #3 x, y, 1 + z.

^{*d*} Symmetry transformations used to generate equivalent atoms: #1 1 - x, 1 - y, 1 - z.

^{*e*} Symmetry transformations used to generate equivalent atoms: #1 - x, 1 - y, 1 - z.

^{*f*} Symmetry transformations used to generate equivalent atoms: #1 - x, 1 - y, 2 - z.

^g Symmetry transformations used to generate equivalent atoms: #1 1/2 - x, 1/2 - y, 1 - z.

Table S9. Dihalogen bond lengths (Å) and angles (°) for 3-5

	Х	С–Х…Х–С	d(C–X)	$d(X \cdots X)$	$R_{\rm XX}{}^a$	∠(CXX)
3 ^b	Cl	C(25)–Cl(1)····Cl(1)–C(25)	1.741(4)	3.3663(16)	0.9618	154.24(14)
4 ^c	Br	$C(25)-Br(1)\cdots Br(1)-C(25)$	1.897(4)	3.3777(8)	0.9129	152.03(11)
5^{d}	Cl	C(25)–Cl(2)···Cl(2)–C(25)	1.739(3)	3.3737(11)	0.9639	154.81(10)

 ${}^{a}R_{XX} = d(X \cdot \cdot \cdot X)/(r_X + r_X)$, where r_X is the van der Waals radii¹ of the halogen atom X (following the definition of Lommerse et al.²).

^b Symmetry transformations used to generate equivalent atoms: 2 - x, -y, 1 - z.

^c Symmetry transformations used to generate equivalent atoms: -1 - x, 2 - y, 1 - z.

^{*d*} Symmetry transformations used to generate equivalent atoms: 2 - x, -y, 2 - z.

References

- 1 A. Bondi, J. Phys. Chem., 1964, 68, 441.
- 2 J. P. M. Lommerse, A. J. Stone, R. Taylor and F. H. Allen, J. Am. Chem. Soc., 1996, **118**, 3108.