Electronic Supplementary Information (ESI)

Evolution of ZnO microstructures from hexagonal disk to prismoid, prism and pyramid and their crystal facetdependent gas sensing properties

Nan Qin^a, Qun Xiang^{*b}, Hongbin Zhao^b, Jincang Zhang^a, Jiaqiang Xu^{*b,c}

^a Department of Physics, College of Science, Shanghai University, Shanghai, 200444, China

^b NEST Lab, Department of Chemistry, College of Science, Shanghai University, Shanghai,

200444, China. Tel.: +86 21 66132701; E-mail: xujiaqiang@shu.edu.cn

^c State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and

Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China

Gas concentration calculation

To obtain the desired gas concentration, injection volume of the gas or liquid can be calculated as follow:

When the test target is gas:

$$V_{x} = V \times C \times 10^{-6} \times \frac{273 + T_{r}}{273 + T_{c}}$$
(1)

When the test target is liquid vapor:

$$V_{x} = \frac{V \times C \times M}{22.4 \times d \times p} \times 10^{-9} \times \frac{273 + T_{r}}{273 + T_{c}}$$
(2)

where V_x os the injection volume (ml), V is the test chamber volume (ml), C is the gas or liquid vapor concentration (ppm), M is the liquid mole mass (g/mol), d is the liquid specific gravity (g/cm³), p is the liquid purity, Tr is the room temperature (°C) and Tc is the chamber temperature (°C).

Gas sensing properties of the sensors

 $O_2 (gas) \leftrightarrow O_2 (adsorbed)$ (3)

$$O_2 (ads) + e^- \leftrightarrow O_2^- (ads)$$
⁽⁴⁾

$$O_2^-(ads) + e^- \leftrightarrow 2O^-(ads)$$
 (5)

$$O^{-}(ads) + e^{-} \leftrightarrow O^{2^{-}}(ads)$$
 (6)

$$V_{O} + O_{2}(g) \leftrightarrow O_{2}^{-}(ads) + V_{O}^{-}$$
(7)

$$V_0 + O_2(g) \leftrightarrow O_2^-(ads) + V_0 \leftrightarrow 2O^- + 2V_0^{\bullet}$$
(8)

wherein "g" and "ads" refer to gas and adsorbate, V_0 oxygen vacancy, and V_0 single electropositive oxygen vacancy.

In addition, C₂H₅OH gas can be either dehydrated at the surface of acidic oxide:

$$C_2H_5OH(g) \to C_2H_4(g) + H_2O(g)$$
 (9)

or dehydrogenated at the surface of basic oxide:

$$C_2H_5OH(g) \rightarrow CH_3CHO(g) + H_2(g) \tag{10}$$

Since ZnO is a basic metal oxide, the catalytic oxidation of C_2H_5OH on the ZnO surface will happen according to Eq. 10. The sequent gas sensing reaction is shown in Eq. 11:

$$CH_3CHO (ads) + 5O^{-}(ads) \rightarrow 2CO_2 + 2H_2O + 5e^{-}$$
(11)

When the sensor is exposed to the other gases:

$$H_2(ads) + O^-(ads) \rightarrow H_2O + e^-$$
(12)

$$CH_3OH(ads) + 3O^{-}(ads) \rightarrow CO_2 + 2H_2O + 3e^{-}$$
(13)

HCHO (ads) + 20⁻ (ads)
$$\rightarrow$$
 CO₂ + H₂O + 2e⁻ (14)