SUPPORTING INFORMATION

Stable yellow ZnO mesocrystals with efficient visible light photocatalytic activity

Yin Peng^a, Yu Wang^a, Qing Guo Chen^a, Qing Zhu^b and An-Wu Xu*^b

^aThe Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials

Science, Anhui Normal University, Wuhu 241000, China

^bDivision of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at Microscale,

Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R China.

Fax: (+86) 551-6360 2346; E-mail: anwuxu@ustc.edu.cn.

1				
Peak position (eV)	ZnO-500		ZnO-800	
	Area	Height	Area	Height
	ratio	ratio	ratio	ratio
530.54	1	1	1	1
531.92	0.68	0.73	0.58	0.68
533.4	0.22	0.40	0.11	0.40

Table S1. Details of XPS peak information.

Figure S1. XPS spectra for F1s of the ZnO-500 and ZnO-800 samples obtained by calcination of Zn(OH)F precursor.

Figure S2. The UV-visible diffuse reflectance spectra of ZnO samples obtained at different annealing temperatures.

Figure S3. IR spectra of the obtained ZnO and ZnO-ref.

Figure S4. XRD pattern (a) and SEM image (b) of yellow ZnO-500 photocatalyst after being reused for five times.