Electronic Supplementary Information (ESI)

Assembly of a series of zinc coordination polymers based on 1,4-bis[2-(4-pyridyl)ethenyl]-2,3,5,6-tetramethylbenzene and 1,3-benzenedicarboxylate derivatives

Yu Ge,^a Ni-Ya Li,^a Xue-Ying Ji,^a Jun-Feng Wang,^a Dong Liu*^a and Xiao-Yan Tang*^b

^a College of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, P. R. China. Fax: 86-561-3806281; E-mail: dongliu@chnu.edu.cn

^b School of Chemistry and Materials Engineering, Changshu Insititute of Technology, Changshu 215500, Jiangsu, P. R. China. E-mail: tangxy@cslg.edu.cn

Table of Contents

Fig. S1 The ¹ H NMR spectrum of 1,4-bpetmb in d_6 -DMSO at ambient temperatureS3
Fig. S2 Experimental and simulated PXRD patterns for 1 (a); 2 (b); 3 (c); 4 (d) and 5(e)S4
Fig. S3 Related figures for compound 2
Fig. S4 (a) N_2 sorption isotherms for 4 at 77K. (b) CO_2 sorption isotherms for 4 at 273KS7
Fig. S5 The TGA curves for 1-5

Fig. S1 The ¹H NMR spectrum of 1,4-bpetmb in d_6 -DMSO at ambient temperature.

Fig. S2 PXRD patterns for 1 (a, experimental: red; simulated: black); 2 (b, experimental: red; simulated: black); 3 (c, experimental: red; simulated: black); 4 (d, experimental: red; simulated: black); desolvated sample: blue) and 5(e, experimental: red; simulated: black).

Fig. S3 (a) View of the coordination environment of Zn1 in **2** with labeling scheme. (b) View of the 1D [Zn(5-Cl-1,3-BDC)]_n chain in **2**. All hydrogen atoms are omitted for clarity. The cyan, red, blue and green balls represent zinc, oxygen, nitrogen and chlorine atoms, respectively. Symmetry codes: (A) x - 1, y + 1, z + 1; (B) x - 1, y, z; (C) - x + 1, - y + 2, - z + 1.

Gas adsorption was measured by N_2 and CO_2 sorption using Micromeritics ASAP 2020 system. The sample was heated to 150°C under vacuum for 12 h to remove the solvents.

Fig. S4 (a) N_2 sorption isotherms for 4 at 77K. (b) CO_2 sorption isotherms for 4 at 273K. The gas uptake of both N_2 and CO_2 were negligible. The kinetic diameter of N_2 and CO_2 are 3.68 Å and 3.4 Å, respectively. Thus, N_2 and CO_2 molecules could not access the small pores in 4.

Fig. S5 The TG curves for 1-5.