Supporting Information

for

Unusual hydrogen bonds pattern for contribution a supramolecular assembly: Conformational study, Hirshfeld surface analysis and density functional calculations of a new steroid derivative.

Alberto Ruiz¹, Hiram Pérez^{*2}, Cercis Morera-Boado³, Luis Almagro¹, Cecilia C. P. da Silva⁴, Javier Ellena⁴, José M. García de la Vega⁵, Roberto Martínez-Álvarez,⁶ Margarita Suárez^{*1} and Nazario Martín^{*6}

¹Laboratorio de Síntesis Orgánica, Facultad de Química, Universidad de la Habana. 10400-La Habana, Cuba

²Departamento de Química Inorgánica, Facultad de Química, Universidad de La Habana, 10400-La Habana, Cuba

³Laboratorio de Química, Computacional y Teórica. Facultad de Química. Universidad de la Habana. 10400-La Habana, Cuba.

⁴Grupo de Cristalografía, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil.

⁵Departamento de Química Física Aplicada. Facultad de Ciencias, Universidad Autónoma de Madrid. Spain

⁶Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.

Email: Hiram Pérez* -hperez@fq.uh.cu; Margarita Suárez*-msuarez@fq.uh.cu; Nazario Martin* -nazmar@quim.ucm.es *Corresponding authors

Table of Contents

Table S1. The ring puckering parameters of compound I.	S2
Table S2. Experimental X-ray and theoretical bond lengths (Å) of compound I.	S3
Table S3 .Experimental X-ray and theoretical angles (°) of compound I.	S4
Table S4 .Experimental X-ray and theoretical torsion angles (°) of compound I	S6
Figure S1. Mean deviations values of bond lengths, bond angles and torsion angle	S 8
Table S5. Relationship of C17-C16-C18-H torsion angle with C18-H distance	S9
(v_{C18-H}) and stretching vibrational frequencies of C18-H (v_{C18-H}).	
Table S6. Relative contributions to the Hirshfeld surface area for the	S9
intermolecular contacts of the three molecules in title compound.	
Cif CCDC 925060	S10

Molecule	Ring	Q(2) (Å)	Q(3) (Å)	$\Phi(2)(^{\circ})$	Q (Å)	θ (°)
	Α	0.023 (3)	-0.568 (3)	63.3 (7)	0.568 (3)	179.7 (3)
IA	В	0.016 (3)	-0.563 (3)	107.8 (1)	0.562 (3)	180.0 (3)
	C	0.111 (3)	-0.578 (3)	99.0 (1)	0.589 (3)	169.0 (3)
	D	0.364 (3)		34.2 (5)		
	A	0.040 (3)	-0.563 (3)	119.0 (4)	0.565 (3)	176.0 (3)
IB	В	0.049 (3)	-0.588 (3)	92.8 (3)	0.588 (3)	175.4 (3)
	C	0.128 (3)	-0.561 (3)	84.7 (1)	0.576 (3)	167.1 (3)
	D	0.375 (3)		31.1 (5)		
	A	0.051 (3)	-0.563 (3)	91.1 (4)	0.565 (3)	174.8 (3)
IC	В	0.007 (3)	-0.567 (3)	155.0 (2)	0.567 (3)	180.0 (3)
	C	0.101 (3)	-0.579 (3)	97.0 (2)	0.587 (3)	170.1 (3)
	D	0.371 (3)		30.9 (5)		

 Table S1. The ring puckering parameters of compound I.

	-	Experimental		Calc	ulated
Parameters*	Molecule	Molecule	Molecule	^a M06-2X/	^b M06-2X/
	IA	IB	IC	6-31++G(d.p)	6-311++G(d.p)
Cl-C17	1.721(3)	1.720(3)	1.715(4)	1,729	1,729
O1-C21	1.334(4)	1.342(3)	1.340(4)	1,346	1,344
O1-C3	1.460 (3)	1.463(3)	1.459(3)	1,441	1,441
O2-C21	1.208(4)	1.201(3)	1.202(5)	1,208	1,202
O3-C18	1.204(5)	1.202(4)	1.210(6)	1,214	1,207
C1-C2	1.527(4)	1.526(3)	1.532(4)	1,533	1,533
C1-C10	1.542(4)	1.536(4)	1.537(4)	1,544	1,543
C2-C3	1.516(5)	1.510(4)	1.504(5)	1,522	1,521
C3-C4	1.513(4)	1.506(4)	1.508(4)	1,519	1,517
C4-C5	1.525(3)	1.537(3)	1.531(4)	1,531	1,530
C5-C6	1.502(4)	1.519(4)	1.507(4)	1,529	1,528
C5-C10	1.549(4)	1.545(4)	1.548(4)	1,556	1,555
C6-C7	1.519(3)	1.531(4)	1.515(4)	1,528	1,527
C7-C8	1.523(4)	1.525(4)	1.517(4)	1,531	1,530
C8-C14	1.515(3)	1.510(3)	1.517(3)	1,520	1,519
C8-C9	1.552(3)	1.545(4)	1.548(3)	1,552	1,552
C9-C11	1.544(4)	1.535(4)	1.544(4)	1,545	1,544
C9-C10	1.553(3)	1.556(3)	1.554(3)	1,557	1,556
C10-C20	1.537(4)	1.536(4)	1.537(4)	1,539	1,538
C11-C12	1.535(3)	1.540(3)	1.531(3)	1,541	1,540
C12-C13	1.524(4)	1.517(4)	1.518(4)	1,527	1,526
C13-C17	1.507(3)	1.512(3)	1.513(4)	1,513	1,511
C13-C19	1.540(4)	1.546(4)	1.542(4)	1,544	1,543
C13-C14	1.549(4)	1.537(4)	1.544(4)	1,546	1,545
C14-C15	1.534(3)	1.541(4)	1.534(4)	1,537	1,536
C15-C16	1.509(4)	1.507(4)	1.505(5)	1,518	1,517
C16-C17	1.347(4)	1.326(4)	1.344(5)	1,346	1,342
C16-C18	1.460(4)	1.467(4)	1.462(4)	1.468	1.467
С18-Н	1.030(4)	1.050(3)	1.040(6)	1.106	1.104
C21-C22	1.501(4)	1.493(4)	1.499(4)	1.505	1.504
$MD = \sum \left x_{exp} - x^a_{theor} \right / N$	0.009	0.010	0.009		
$MD = \sum \left x_{exp} - x^{b}_{theor} \right / N$	0.008	0.008	0.008		

Table S2. Experimental X-ray and theoretical bond lengths (Å) of compound I.

* The structure parameters are in accordance with the atom numbering scheme given in Figure

In *MD* (mean deviation) expression: x = bond lengths and N= 30.

^aM06-2X/6-31++G(d,p)

^bM06-2X/6-311++G(d,p)

1		Experimental		Calc	ulated
Parameters*	Molecule	Molecule	Molecule	^a M06-2X/	^b M06-2X/
	IA	IB	IC	6-31++G(d.p)	6-311++G(d.p)
C21-O1-C3	117.5(3)	117.1(2)	117.7(3)	117,0	117,1
C2-C-C10	114.0(2)	113.7(2)	113.7(2)	113.6	113,6
C3-C2-C1	110.9(3)	110.7(2)	111.8(3)	110,8	110,8
01-C3-C4	111.2(2)	106.6(2)	110.7(2)	107,1	107,1
01-C3-C2	106.3(3)	109.8(2)	106.0(3)	110.6	110,6
C4-C3-C2	111.9(3)	112.9(2)	112.8(3)	111.5	111.6
C3-C4-C5	110.4(2)	111.1(2)	110.5(2)	110,3	110,2
C6-C5-C4	113.0(2)	111.8(2)	112.4(2)	112,1	112,1
C6-C5-C10	113.6(2)	112.2(2)	113.1(2)	112,3	112,3
C4-C5-C10	113.2(2)	112.9(2)	113.0(2)	113.0	113.0
C5-C6-C7	111.9(2)	111.6(3)	111.8(2)	112,1	110,8
C6-C7-C8	111.5(2)	111.9(2)	111.0(2)	112,1	112,0
C14-C8-C7	112.5(2)	112.3(2)	112.3(2)	111,8	111,7
C14-C8-C9	107.5(2)	108.6(2)	107.9(2)	107,4	107,3
C7-C8-C9	111.3(2)	110.0(2)	111.5(2)	110,0	111,0
C11-C9-C8	112.3(2)	113.6(2)	111.9(2)	113.0	113.0
C11-C9-C10	113.8(2)	114.0(2)	114.0(2)	113.7	113.7
C8-C9-C10	112.4(2)	111.3(2)	112.4(2)	112,1	112,0
C20-C10-C1	109.5(2)	109.2(2)	109.6(2)	109,1	109,1
C20-C10-C5	111.7(2)	112.1(2)	112.0(2)	111,8	111,9
C1-C10-C5	106.8(2)	106.6(2)	106.2(2)	107,6	107,6
C20-C10-C9	110.7(2)	110.8(2)	110.5(2)	111,0	111,0
C1-C10-C9	110.1(2)	110.7(2)	110.3(2)	110,2	110,1
C5-C10-C9	107.9(2)	107.4(2)	108.0(2)	107,1	107,1
C12-C11-C9	115.1(2)	114.9(2)	115.1(2)	114,5	114,4
C13-C12-C11	109.9(2)	109.7(2)	109.7(2)	109,8	109,8
C17-C13-C12	118.2(2)	118.7(2)	118.6(2)	118,7	118,6
C17-C13-C19	106.4(2)	106.2(2)	106.2(2)	106,2	106,2
C12-C13-C19	111.5(2)	111.7(3)	111.1(2)	110,8	111,0
C17-C13-C14	98.7(2)	98.5(2)	98.6(2)	98,8	98,7
C12-C13-C14	107.5(2)	107.6(2)	107.8(2)	108,2	108,2
C19-C13-C14	114.2(2)	113.6(3)	114.3(3)	113,8	113,8
C8-C14-C15	123.2(2)	122.0(2)	122.6(2)	122,2	122,3
C8-C14-C13	112.2(2)	112.4(2)	112.2(2)	112,2	112,1
C15-C14-C13	104.7(2)	104.0(2)	104.4(2)	104,5	104,5
C16-C15-C14	100.9(2)	100.8(2)	100.8(3)	100,8	100,8
C17-C16-C18	125.2(3)	126.2(3)	125.0(4)	126,5	126,5
C17-C16-C15	109.7(2)	110.0(2)	110.3(3)	109,9	109,9
C18-C16-C15	125.1(3)	123.8(2)	124.7(4)	126,6	123,6
O3-C18-C16	124.8(4)	124.6(2)	123.5(5)	122,6	122,7
ОЗ-С18-Н	121.0(2)	121.8(18)	124.0(3)	121,0	121,1
С16-С18-Н	114.0(2)	113.7(18)	112.0(3)	116,4	116,2
C16-C17-C13	112.9(2)	112.6(2)	111.9(3)	112,2	112,3
C16-C17-Cl	126.3(2)	126.9(2)	126.4(2)	126,6	126,6
C13-C17-Cl	120.6(2)	120.1(2)	121.3(3)	120,9	120,8
O2-C21-O1	123.7(3)	122.8(2)	123.9(3)	123,6	123,7
O2-C21-C22	125.4(4)	124.9(3)	124.9(4)	125,2	125,3
01-C21-C22	110.9(4)	112.3(3)	111.2(4)	111,2	111,0
$MD = \sum x_{exp} - x^{a}_{theor} /N$	0.69	0.55	0.79		

 Table S3. Experimental X-ray and theoretical angles (°) of compound I.

$MD = \sum \left x_{exp} - x^{b}_{theor} \right / N$	0.66	0.52	0.77			
* The structure parameters are in accordance with the atom numbering scheme given in Figure						
In MD (mean deviation) expression	x = angles a	and N= 48.				
^a M06-2X/6-31++G(d,p)						

^bM06-2X/6-311++G(d,p)

]	Experimental		Calc	culated
Parameters*	Molecule	Molecule	Molecule	^a M06-2X/	^b M06-2X/
	IA	IB	IC	6-31++G(d.p)	6-311++G(d.p)
C10-C1-C2-C3	55.1(4)	56,2(3)	54.4(4)	55.4	55.1
C21-O1-C3-C4	81.9(3)	160.1(2)	77.3(3)	157.5	157.2
C21-O1-C3-C2	-156.1(3)	-77.3(3)	-160(3)	-80.8	-80.9
C1-C2-C3-O1	-175.7(2)	-171.6(2)	-173(2)	-174.5	-174.7
C1-C2-C3-C4	-54.2(4)	-52.8(3)	-51.8(4)	-55.4	-55.5
O1-C3-C4-C5	174.3(2)	173.7(2)	172(2)	177.7	177.9
C2-C3-C4-C5	55.7(3)	53(3)	53.4(4)	56.5	56.7
C3-C4-C5-C6	171.1(3)	176.6(3)	172.7(3)	174.2	174.3
C3-C4-C5-C10	-58.0(3)	-55.9(3)	-57.8(3)	-57.6	-57.6
C4-C5-C6-C7	-172.8(2)	-175.9(3)	-173.2(3)	-173.3	-173.3
C10-C5-C6-C7	56.5(3)	56.1(4)	57.3(3)	63.4	58.3
C5-C6-C7-C8	-54.5(3)	-53.8(4)	-55.9(4)	-54.5	-54.6
C6-C7-C8-C14	174.5(2)	175.7(3)	176(2)	173.3	173.3
C6-C7-C8-C9	53.8(3)	54.6(4)	54.7(3)	53.4	53.6
C14-C8-C9-C11	51.3(3)	47.9(3)	51.3(3)	51.6	51.7
C7-C8-C9-C11	174.9(2)	171.2(2)	175.1(2)	174.3	174.3
C14-C8-C9-C10	-178.8(2)	-178.2(2)	-179(2)	-178,4	-178,3
C7-C8-C9-C10	-55.2(3)	-58.5(3)	-55.2(3)	-55,9	-56,0
C2-C1-C10-C20	66.8(3)	64.6(3)	65.7(4)	67,6	67,6
C2-C1-C10-C5	-54.4(3)	-56.7(3)	-55.5(3)	-53,9	-54,0
C2-C1-C10-C9	-171.3(3)	-173.2(2)	-172.3(3)	-170,3	-170,4
C6-C5-C10-C20	66.7(3)	64(3)	67(3)	63,4	63,3
C4-C5-C10-C20	-64(3)	-63.3(3)	-62.2(3)	-64,7	-64,7
C6-C5-C10-C1	-173.6(2)	-176.5(3)	-173.4(2)	-176,9	-176,9
C4-C5-C10-C1	55.8(3)	56.1(3)	57.5(3)	55,0	55,1
C6-C5-C10-C9	-55.2(3)	-57.9(3)	-55(3)	-58,5	-58,6
C4-C5-C10-C9	174.1(19)	174.8(2)	175.9(2)	173,4	173,4
C11-C9-C10-C20	60.7(3)	66.5(3)	59.3(3)	64,4	64,3
C8-C9-C10-C20	-68.4(3)	-63.6(3)	-69.3(3)	-65,3	-65,3
C11-C9-C10-C1	-60.6(3)	-54.7(3)	-62.2(3)	-56,5	-56,6
C8-C9-C10-C1	170.3(2)	175.1(2)	169.2(2)	173,8	173,8
C11-C9-C10-C5	-176.8(3)	-170.7(2)	-177.9(2)	-173,3	-173,3
C8-C9-C10-C5	54.1(3)	59.1(3)	53.5(3)	57,1	57,1
C8-C9-C11-C12	-48.3(3)	-45.5(4)	-49.2(3)	-48,9	-48,9
C10-C9-C11-C12	-177.4(2)	-174.5(2)	-178(2)	-178,0	-178,0
C9-C11-C12-C13	51.2(3)	50.8(3)	52.2(3)	51,2	51,2
C11-C12-C13-C17	-167.7(2)	-169.3(3)	-168.3(3)	-168,6	-168,5
C11-C12-C13-C19	68.6(3)	66.7(3)	68.3(3)	68,2	68,2
C11-C12-C13-C14	-57.3(3)	-58.7(3)	-57.6(3)	-57,3	-57,3
C7-C8-C14-C15	48.7(3)	54.2(3)	50(4)	51,6	51,7
C9-C8-C14-C15	171.6(2)	176.1(2)	173.2(3)	173,6	173,7
C7-C8-C14-C13	175.1(2)	178.6(2)	175.4(2)	176,9	176,8
C9-C8-C14-C13	-61.9(3)	-59.5(3)	-61.3(3)	-61,1	-61,3
C17-C13-C14-C8	-170.4(19)	-169.7(2)	-170.6(2)	170,2	170,1
C12-C13-C14-C8	66.3(3)	66.4(3)	65.5(3)	65,7	65,8
C19-C13-C14-C8	-58(3)	-57.8(3)	-58.5(3)	-58,0	-58,1
C17-C13-C14-C15	-34.4(2)	-35.9(2)	-35.7(3)	-35,7	-35,7
C12-C13-C14-C15	-157.8(2)	-159.7(2)	-159.6(2)	-159,8	-159,7

Table S4. Experimental X-ray and theoretical torsion angles (°) of compound I

C19-C13-C14-C15	78.0(3)	76(3)	76.4(3)	76,5	76,4
C8-C14-C15-C16	164.0(2)	162.7(2)	163.1(3)	162,7	162,6
C13-C14-C15-C16	34.3(3)	34.5(3)	34.3(3)	34,1	34,1
C14-C15-C16-C17	-20.7(3)	-19.3(3)	-19.2(4)	-19,0	-19,0
C14-C15-C16-C18	157.7(3)	162.3(3)	160.2(3)	162,6	162,6
C17-C16-C18-O3	178.6(3)	175.5(3)	178.7(4)	176,7	176,8
C15-C16-C18-O3	0.4(5)	2.6(5)	-0.5(7)	1,5	1,4
C18-C16-C17-C13	180.0(3)	174.2(3)	176.6(3)	174,2	174,2
C15-C16-C17-C13	-1.6(3)	-4.1(4)	-4.1(4)	-4,2	-4,2
C18-C16-C17-Cl	5.8(3)	1.0(5)	3.9(5)	0,2	0,3
C15-C16-C17-Cl	-175.8(2)	-177.3(2)	-176.7(2)	-178,1	-178,1
C12-C13-C17-C16	138.1(3)	141.1(3)	140.9(3)	141,5	141,5
C19-C13-C17-C16	-95.7(3)	-92.2(3)	-93.3(3)	-92,9	-92,9
C14-C13-C17-C16	22.8(3)	25.6(3)	25.1(3)	25,2	25,2
C12-C13-C17-Cl	-47.4(3)	-45.2(3)	-46(4)(3)	-44,1	-44,2
C19-C13-C17-Cl	78.8(3)	81.5(3)	79.8(3)	81,4	81,4
C14-C13-C17-Cl	-162.69(19)	-160.8(2)	-161.8(2)	-160,5	-160,6
C3-O1-C21-O2	-0.7(3)	-3.6(4)	1.9(5)	0,0	0,0
C3-O1-C21-C22	178.8(3)	175.5(2)	179.4(3)	179,9	179,7
$MD = \sum \left x_{exp} - x^a_{theor} \right / N$	4.01	1.66	4.05		
$MD = \overline{\sum} x_{exp} - x^{b}_{theor} / N$	3.93	1.59	3.96		

* The structure parameters are in accordance with the atom numbering scheme given in Figure

In *MD* (mean deviation) expression:x =torsion angles and N= 67.

^aM06-2X/6-31++G(d,p)

^bM06-2X/6-311++G(d,p)

Figure S1. Mean deviations (MD) values of bond lengths, bond angles and torsion angles

Torsion angle C17-C16-C18-H (°)	d _{C18-H} (Å)	v _{C-H} (cm ⁻¹)
0	1.1058	2790.37
90	1.1092	2731.15
180	1.1102	2727.56

Table S5. Relationship of C17-C16-C18-H torsion angle with C18-H distance (d_{C18-H}) and stretching vibrational frequencies of C18-H (v_{C18-H}).

*Scale factor = 0.94 for M06-2X/6-31+G(d,p) level of theory taken from: M. Alecu, J. Zheng, Y. Zhao and D. G. Truhlar. Computational Thermochemistry: Scale Factor Databases and Scale Factors for Vibrational Frequencies Obtained from Electronic Model Chemistries. *J. Chem. Theory Comput.*, **2010**, *6*, 2872-2887.

Table S6. Relative contributions to the Hirshfeld surface area for the intermolecular contacts of the three molecules in title compound **I**.

Internationa		% Hirshfeld surface area				
Interactions	Molecule IA	Molecule IB	Molecule IC			
H…H	64.1	66.1	66.3			
H…Cl	9.2	8.5	8.6			
Н…О	19.8	17.9	19.5			
Н…С	3.6	3.8	3.4			

Cif CCDC 925060

Cambridge Crystallographic Data Centre

CCDC

#

#

If this CIF has been generated directly or indirectly from an entry in the # Cambridge Structural Database, then it will include bibliographic, chemical, # crystal, experimental, refinement or atomic coordinate data resulting from # the CCDC's data processing and validation procedures. Files generated from # CSD entries are Copyright 2013 Cambridge Crystallographic Data Centre. They # may be used in bona fide research applications only, and may not be copied or # further disseminated in any form, whether machine-readable or not, except for # the purposes of generating routine backup copies on your local computer # system.

#

Files arising from any other source may also contain material that is the # copyright of third parties, including the originator, and you should check # with the originator concerning the permitted uses of the information # contained in this CIF.

#

For further information on the CCDC and the free tools enCIFer and Mercury # for validating and visualising CIF files, please visit www.ccdc.cam.ac.uk

data shelxl symmetry cell setting orthorhombic _symmetry_space_group_name_H-M 'P 21 21 21' _symmetry_Int_Tables_number 19 loop_ _symmetry_equiv_pos_site id _symmetry_equiv_pos_as_xyz 1 x,y,z 2 1/2-x,-y,1/2+z 3 1/2+x,1/2-y,-z 4 -x,1/2+y,1/2-z cell length a 7.48200(10) _cell_length_b 22.7510(3) 36.2940(5) cell length c cell angle alpha 90 _cell_angle_beta 90 _cell_angle_gamma 90 _cell_volume 6178.07 loop atom site label _atom_site_type_symbol _atom_site_fract_x

```
_atom_site_fract_y
_atom_site_fract_z
CI1A CI 0.28033(14) 0.09649(5) -0.00117(2)
O1A O 0.7480(3) 0.18595(10) 0.29069(5)
O2A O 1.0168(5) 0.22795(13) 0.28532(8)
O3A O 0.8428(4) 0.06359(12) -0.03192(7)
C1A C 0.4862(4) 0.17944(13) 0.20259(7)
H1A H 0.5243 0.2154 0.1906
H1B H 0.3581 0.1759 0.1992
C2A C 0.5258(5) 0.18418(15) 0.24375(8)
H2A H 0.4708 0.2195 0.2535
H2B H 0.4744 0.1507 0.2565
C3A C 0.7254(5) 0.18610(13) 0.25074(7)
H3A H 0.774 0.2228 0.2407
C4A C 0.8210(4) 0.13460(13) 0.23322(7)
H4A H 0.7826 0.0984 0.2449
H4B H 0.9488 0.1386 0.2369
C5A C 0.7806(4) 0.13200(12) 0.19208(7)
H5A H 0.817 0.1703 0.1823
C6A C 0.8931(4) 0.08777(14) 0.17194(7)
H6A H 0.862 0.0486 0.1803
H6B H 1.018 0.0945 0.1777
C7A C 0.8670(4) 0.09146(14) 0.13049(7)
H7A H 0.9343 0.0603 0.1187
H7B H 0.9131 0.1287 0.1216
C8A C 0.6707(3) 0.08603(11) 0.12003(6)
H8A H 0.6296 0.0465 0.1266
C9A C 0.5544(3) 0.13145(11) 0.14110(6)
H9A H 0.6008 0.1702 0.1341
C10A C 0.5783(3) 0.12701(11) 0.18351(7)
C11A C 0.3574(4) 0.13056(14) 0.12847(7)
H11A H 0.3013 0.0953 0.1381
H11B H 0.2966 0.1641 0.1393
C12A C 0.3292(4) 0.13217(13) 0.08658(7)
H12A H 0.2039 0.1258 0.081
H12B H 0.3632 0.1704 0.0771
C13A C 0.4417(4) 0.08463(11) 0.06822(7)
C14A C 0.6391(3) 0.09542(11) 0.07921(6)
H14A H 0.6588 0.1375 0.0752
C15A C 0.7485(4) 0.06461(12) 0.04913(7)
H15A H 0.8651 0.0826 0.0461
H15B H 0.7633 0.0231 0.0543
C16A C 0.6311(4) 0.07462(12) 0.01591(7)
C17A C 0.6916(6) 0.07324(15) -0.02232(9)
C18A C 0.4630(4) 0.08652(12) 0.02695(7)
C19A C 0.3722(5) 0.02270(13) 0.07761(8)
H19A H 0.254 0.0179 0.0678
H19B H 0.3692 0.0178 0.1039
H19C H 0.4502 -0.0062 0.067
C20A C 0.4992(4) 0.06921(12) 0.19815(7)
```

H20A H 0.5386 0.063 0.223 H20B H 0.5384 0.0372 0.183 H20C H 0.3711 0.0714 0.1976 C21A C 0.8991(6) 0.20840(15) 0.30416(10) C22A C 0.8998(6) 0.2061(2) 0.34550(9) H22A H 1.0202 0.2101 0.3543 H22B H 0.8516 0.1692 0.3536 H22C H 0.8281 0.2376 0.3551 H17A H 0.592(5) 0.0809(16) -0.0411(10) CI1B CI -0.24921(13) 0.41361(5) 0.33984(2) O1B O 0.0781(3) 0.27506(8) 0.04792(5) O2B O -0.0719(3) 0.19067(10) 0.04215(6) O3B O 0.3295(4) 0.43411(11) 0.36219(6) C1B C -0.1580(4) 0.30191(14) 0.13850(7) H1D H -0.1474 0.2638 0.1502 H1E H -0.2773 0.3166 0.1434 C2B C -0.1356(4) 0.29427(14) 0.09697(7) H2D H -0.2217 0.2658 0.088 H2E H -0.1588 0.3314 0.0847 C3B C 0.0510(4) 0.27373(13) 0.08783(7) H3B H 0.0667 0.2334 0.0967 C4B C 0.1937(4) 0.31216(14) 0.10441(7) H4D H 0.1914 0.3504 0.0926 H4E H 0.3101 0.2947 0.0999 C5B C 0.1656(3) 0.31960(12) 0.14609(7) H5B H 0.1724 0.2802 0.1568 C6B C 0.3148(4) 0.35522(18) 0.16361(8) H6D H 0.3144 0.3946 0.1534 H6E H 0.4289 0.3372 0.1578 C7B C 0.2936(4) 0.35888(17) 0.20550(7) H7D H 0.3117 0.3202 0.2161 H7E H 0.3846 0.3848 0.2154 C8B C 0.1095(3) 0.38163(11) 0.21659(6) H8B H 0.097 0.4221 0.2078 C9B C -0.0377(3) 0.34368(11) 0.19856(6) H9B H -0.0128 0.3032 0.2062 C10B C -0.0212(3) 0.34397(11) 0.15584(7) C11B C -0.2264(4) 0.35733(15) 0.21275(7) H11D H -0.3064 0.3264 0.2046 H11E H -0.2666 0.3938 0.2016 C12B C -0.2421(4) 0.36306(15) 0.25490(7) H12D H -0.3601 0.3774 0.2613 H12E H -0.226 0.3248 0.2663 C13B C -0.1012(4) 0.40535(12) 0.26908(7) C14B C 0.0824(3) 0.38103(11) 0.25781(6) H14B H 0.0818 0.3395 0.265 C15B C 0.2137(4) 0.41153(13) 0.28436(7) H15D H 0.3202 0.3881 0.2883 H15E H 0.2476 0.4502 0.2755 C16B C 0.1010(4) 0.41528(12) 0.31871(7)

C17B C 0.1742(5) 0.42563(14) 0.35564(8) C18B C -0.0703(4) 0.40946(13) 0.31018(7) C19B C -0.1355(5) 0.46884(14) 0.25565(9) H19D H -0.2403 0.4842 0.2675 H19E H -0.1531 0.4688 0.2295 H19F H -0.0345 0.493 0.2617 C20B C -0.0505(5) 0.40611(13) 0.14045(8) H20D H -0.0276 0.4062 0.1144 H20E H 0.0295 0.433 0.1524 H20F H -0.1717 0.418 0.1449 C21B C 0.0053(4) 0.23126(13) 0.02822(7) C22B C 0.0293(5) 0.23977(16) -0.01228(7) H22D H 0.0879 0.206 -0.0225 H22E H 0.1008 0.2741 -0.0166 H22F H -0.0855 0.2446 -0.0237 H17B H 0.077(5) 0.4252(13) 0.3766(8) CI1C CI 0.80766(17) 0.57352(5) 0.16918(3) O1C O 0.2564(3) 0.70761(9) -0.10970(5) O2C O -0.0250(4) 0.73912(13) -0.10137(8) O3C O 0.2630(5) 0.51789(13) 0.20057(7) C1C C 0.5352(5) 0.69383(13) -0.02418(8) H1G H 0.4942 0.7266 -0.0093 H1H H 0.6644 0.6923 -0.0223 C2C C 0.4842(5) 0.70514(16) -0.06446(9) H2G H 0.5299 0.7432 -0.072 H2H H 0.5394 0.6755 -0.0799 C3C C 0.2850(5) 0.70376(13) -0.07001(8) H3C H 0.2317 0.7382 -0.0581 C4C C 0.1997(4) 0.64895(13) -0.05464(7) H4G H 0.2379 0.6151 -0.0689 H4H H 0.0707 0.652 -0.0566 C5C C 0.2522(4) 0.64049(12) -0.01422(7) H5C H 0.2136 0.6763 -0.0015 C6C C 0.1517(4) 0.59073(14) 0.00371(8) H6G H 0.1865 0.5539 -0.0077 H6H H 0.0246 0.5961 -0.0003 C7C C 0.1884(4) 0.58748(15) 0.04471(8) H7G H 0.1272 0.5537 0.055 H7H H 0.1421 0.6225 0.0566 C8C C 0.3873(4) 0.58237(12) 0.05222(7) H8C H 0.4295 0.545 0.042 C9C C 0.4930(3) 0.63281(11) 0.03368(7) H9C H 0.4462 0.6693 0.0443 C10C C 0.4569(4) 0.63668(11) -0.00842(7) C11C C 0.6933(4) 0.63104(13) 0.04388(7) H11G H 0.7483 0.5983 0.0311 H11H H 0.7493 0.6668 0.0349 C12C C 0.7327(4) 0.62509(12) 0.08509(7) H12G H 0.8599 0.6193 0.0888 H12H H 0.6976 0.6608 0.0978

```
C13C C 0.6303(4) 0.57317(12) 0.10077(7)
C14C C 0.4297(4) 0.58333(12) 0.09309(7)
H14C H 0.4055 0.6237 0.1011
C15C C 0.3334(5) 0.54378(15) 0.12099(8)
H15G H 0.2158 0.5589 0.1271
H15H H 0.3223 0.5038 0.112
C16C C 0.4590(6) 0.54753(14) 0.15328(8)
C17C C 0.4108(8) 0.53360(18) 0.19132(10)
C18C C 0.6209(5) 0.56610(13) 0.14217(8)
C19C C 0.7036(5) 0.51459(13) 0.08565(9)
H19G H 0.7102 0.5165 0.0593
H19H H 0.6255 0.4831 0.0927
H19I H 0.8207 0.5077 0.0955
C20C C 0.5389(4) 0.58361(13) -0.02845(8)
H20G H 0.4983 0.583 -0.0535
H20H H 0.5028 0.548 -0.0163
H20I H 0.6669 0.5866 -0.028
C21C C 0.0952(6) 0.72510(15) -0.12149(10)
C22C C 0.0869(6) 0.7262(2) -0.16275(9)
H22G H 0.0247 0.6919 -0.1714
H22H H 0.206 0.7264 -0.1726
H22I H 0.0247 0.7608 -0.1707
H17C H 0.520(8) 0.536(2) 0.2089(14)
```

```
#END
```