SUPPORTING INFORMATION

Sorption comparison of two indium-organic framework isomers with

syn/anti configurations

Jinjie Qian,^{*a,b*} Feilong Jiang,^{*a*} Kongzhao Su,^{*a,b*} Qipeng Li,^{*a,b*} Kang Zhou,^{*a,b*} Mingyan Wu,^{*a*} Daqiang Yuan^{*a*} and Maochun Hong^{**a*}

^aState Key Laboratory of Structure Chemistry, State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China

^bUniversity of Chinese Academy of Sciences, Beijing, 100049, China

*To whom correspondence should be addressed: E-mail:<u>hmc@fjirsm.ac.cn</u>; Fax: +86-591-83794946; Tel: +86-591-83792460

Table of Content

S1. Crystal Data	SO
S2. Additional X-ray Crystal Structural Figure	<i>S1-S2</i>
S3. Topological Analysis	<i>S3</i>
S4. PXRD and TGA data	<i>S4</i>
S5. Sorption Isotherms and Pore Size Distributions	<i>S5-S6</i>
S6. References	<i>S6</i>

S1. Crystal Data

Table S1. Summary of Crystal Data and Refinement Results

Name	Formula	Space group	a/b (Å)	c (Å)	α/γ (°)	<i>6</i> (°)	R(F)		
InOF-3	[Me ₂ NH ₂][In(BPDC) ₂]	<i>₽</i> 2₁/n	14.0612(2)/16.1146(2)	15.5087(2)	90	103.831(2)	0.0360		
InOF-4	[MeNH ₃][In(BPDC) ₂]	P -42c	10.74540(10)	14.4927(6)	90	90	0.0511		
InOF denotes Indium-Organic Framework; BPDC = Biphenyl-3,3'-dicarboxylic acid; More details see CIF files.									

S2. Additional X-ray Crystal Structural Figures

Figure S1. Asymmetric unit of InOF-3.

Figure S2. Asymmetric unit of InOF-4.

Figure S3. Summary of dihedral angles of BPDC ligands in InOF-3 (a))and InOF-4 (b, c).

Figure S4. Models of 2D close-stacking layer-by-layer InOF-3.

Figure S5. Models of 3D 4-fold microporous InOF-4.

Figure S6. Photographs of the as-obtained InOF-3 (up) and InOF-4 (down).

Figure S7. Single layer of InOF-3 and its topological figures.

Figure S8. Single network of InOF-4 and its topological figures.

S4. TGA data and PXRD patterns

Figure S9. TGA curves for InOF-3 and InOF-4 before and after activation process.

Figure S10. PXRD patterns for InOF-3 (a) and InOF-4 (b).

S5 Sorption Isotherms and Pore Size Distributions

 N_2 , H_2 and CO_2 Isotherms. All the N₂, H₂ and CO₂ isotherms for InOF-3 and InOF-4 were determined using an IGA gravimetric adsorption apparatus at the Fujian Institute of Research on the Structure of Matter in a clean ultra high vacuum system. Before measurements, about 100 mg acetone-exchanged samples were loaded into the sample basket within the adsorption instrument (ASAP 2020) and then degassed under dynamic vacuum for 10 h to obtain the fully desolvated samples.

Figure S11. The pore size distribution incremental pore volume (V) vs. pore width (d) conducted by Horvath-Kawazoe method.

Figure S12. N₂ isotherms at 77 K for **InOF-3** samples activated at different temperature (60 °C, 100 °C, 150 °C).

Figure S13. N₂ and Ar isotherms at 77 K for InOF-3 samples activated at 60 °C.

Figure S14. Cycling of N_2 uptake for the activated InOF-4 sample at 77 K without reactivation process between cycles.

S6. References.

[S1] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Cryst.* **2009**, *42*, 339.

[S2] SHELXS, G.M. Sheldrick, *Acta Cryst.* 2008, *A64*, 112.
[S3] SHELXL, G.M. Sheldrick, *Acta Cryst.* 2008, *A64*, 112.
[S4] (a) A. L. Spek, *J. Appl. Crystallogr.* 2003, *36*, 7; (b) P. v.d. Sluis and A. L. Spek, *Acta Crystallogr., Sect. A*, 1990, *46*, 194.