SUPPORTING INFORMATION FOR

Optical gap in herringbone and π-stacked crystals of [1]benzothieno[3,2-b]benzothiophene and its brominated derivative

Vijay S. Vyas, ^a Rico Gutzler, ^a Jürgen Nuss,^a Klaus Kern ^{a,b} and Bettina V. Lotsch^{a,c,d}

^a Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany

E-mail: b.lotsch@fkf.mpg.de; **Fax:** +49 711689-1612 ; **Tel:** +49 711689-1610

^b Institut de Physique de la Matière Condensée, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.

^c Department of Chemistry, University of Munich (LMU), Butenandtstr. 5-13, 81377 Munich, Germany

^d Nanosystems Initiative Munich (NIM) and Center for Nanoscience, Schellingstraße 4, 80799 Munich, Germany Synthesis of [1]benzothieno[3,2-b]benzothiophene (1)

The title compound was prepared as per literature published procedure.^[S1] ¹H NMR 300 MHz (CDCl₃): δ 7.91 (4H, m), 7.44 (4H, m). ¹³C NMR 75 MHz (CDCl₃): δ 142.50, 133.67, 133.34, 125.22, 125.10, 124.26, 121.82.

Synthesis of 2,7-dibromo[1]benzothieno[3,2-b]benzothiophene (2)

To an ice cold solution of [1]benzothieno[3,2-b]benzothiophene (0.1 g, 0.42 mmol) in dichloromethane (35 mL) with catalytic amount of iodine was added a solution of bromine (0.15 g, 0.9 mmol) in dichloromethane (15 mL) using a dropping funnel. The solution was stirred for 2 hour at 0 °C and then warmed to room temperature. The contents were stirred at room temperature for 8 hours. The reaction mixture was then precipitated by addition of methanol (50 mL). The precipitate was filtered and washed with 10 % hypo solution (20 mL x 3) followed by water (20 mL x 2), ethanol (20 mL x 2) and dichloromethane (20 mL x 2). The crude product was then chromatographed over silica gel using pentane as eluent to afford **2** (0.09 g, 57 %) shiny colorless solid. The final compound was further purified by crystallization using chloroform. ¹H NMR 300 MHz (CDCl₃): δ 8.03 (2H, dd, *J* = 1.75, 0.47 Hz), 7.70 (2H, dd, *J* = 8.48, 0.46 Hz), 7.55 (2H, dd, *J* = 8.48, 1.75 Hz. ¹³C NMR 75 MHz (C₂D₂Cl₄, 70 °C): δ 143.70, 133.29, 131.57, 128.46, 126.51, 122.45, 118.91. MS (MALDI): *m/z*: 398.5.

¹H NMR of [1]benzothieno[3,2-b]benzothiophene (1)

¹³C NMR of [1]benzothieno[3,2-b]benzothiophene (1)

<u> </u>		
4	ωωνννν	~~~
Ν.	44NNωω	
4	δωνονφ	0.N00
ŵ.	400040	ວັພິບັ
Ω.	ထိုလိုလိုက်ထိုက်	6-44
ω	4000004	01.000
1	LILUII	برا

¹H NMR of 2,7-dibromo[1]benzothieno[3,2-b]benzothiophene (2)

¹³C NMR of 2,7-dibromo[1]benzothieno[3,2-b]benzothiophene (2)

MS (MALDI) of 2,7-dibromo[1]benzothieno[3,2-b]benzothiophene (2)

Optical and Electrochemical Studies.

UV-vis spectra were measured in dichloromethane solution (concentration: 10⁻⁶ M) at 22 °C on a Carey 5000 UV-vis-NIR spectrophotometer (Agilent). The emission spectra were recorded on a Horiba FluoroLog 3 Spectrofluorometer as dichloromethane solutions or in the crystalline state. Cyclic voltammograms (CVs) were recorded on a Princeton Applied Research VersaSTAT electrochemical workstation in dichloromethane containing tetra-*n*-butylammonium hexafluorophosphate (n-Bu₄NPF₆, 0.1 M) as supporting electrolyte at a scan rate of 50 mV/s. The electrode setup consisted of a glassy carbon working electrode, a platinum auxiliary electrode and Ag/AgCl as reference electrode. The potentials were calibrated with the standard ferrocene/ferrocenium redox couple ($E_{1/2} = 0.45$ V measured under identical conditions).

The electrochemical properties of **1** and **2** were investigated in dichloromethane with 0.1 M *n*-Bu₄NPF₆ at a scan rate of 50 mVps. The oxidative behavior of both the compounds is qualitatively rather similar (Figure 4). However, in accordance with the electron withdrawing influence of bromine in **2**, the oxidation half-wave potential ($E_{1/2} = 1.59$ V vs Ag/AgCl) shifted by about 110 mV when compared with **1** ($E_{1/2} = 1.48$ V). From the onset potential (1.38 eV for **1** and 1.49 eV for **2**), the HOMO values of the two compounds estimated using the equation $E_{HOMO} = -4.4 - E_{onset}$ [S2] are -5.8 eV for **1** and -5.9 eV for **2**.

Figure 4. Cyclic Voltammograms of 1 and 2 recorded in dichloromethane.

Crystal Structure Determination

Colorless crystals suitable for single-crystal X-ray diffraction were cut out from plate like needles with several millimeters in length, and mounted with some grease onto nylon loops for X-ray diffraction. During crystal preparation it has turned out that especially the needles of $C_{12}H_6S_2Br_2$ (2) easily split up into sheaves that stick to each other. This behavior is the reason for the relatively poor crystal data of 2 in comparison to 1.

Diffraction data were collected on a three circle diffractometer (Bruker AXS, Karlsruhe, Germany) equipped with a SMART-CCD, using Mo K_{α} radiation ($\lambda = 0.71073$ Å). The 100 K measurement

was performed using an N-Helix low temperature device (Oxford Cryosystems, Oxford, United Kingdom). The collection and reduction of data were carried out with the Bruker Suite software package.^[S3] The intensities were corrected for absorption effects by applying a multi-scan method with Sadabs^[S4]. Both structures were solved by Direct Methods and refined by full matrix least-squares fitting with the Shelxtl software package.^[S5] The positions of the hydrogen atoms in **1** were located from Fourier difference maps and refined together with the isotropic displacement parameters without any restrains. Because of the poor crystal quality of **2**, the positions of the hydrogen atoms were treated by applying a riding model for the *x*, *y* and *z* coordinates using AFIX. ^[S6] The isotropic displacement parameters were restrained to 1.2 times of the attached carbon atoms. The crystallographic data are given in Table 1.

	$C_{12}H_8S_2$ (1)	$C_{12}H_6S_2Br_2$ (2)			
Temperature /K	100.0(2) K	298(2) K			
Formula weight	240.32	398.13			
Space group (no.), Z	$P2_1/c$ (14), 2	$P2_1/n$ (14), 2			
Lattice constants /Å, /°	a = 11.801(2)	7.339(5)			
	b = 5.862(1)	3.915(3)			
	c = 7.933(1)	22.078(14)			
	$\beta = 105.974(3)$	99.08(1)			
$V/\text{\AA}^3$, $\rho_{\text{xray}}/\text{g cm}^{-3}$	527.6(1), 1.513	626.4(7), 2.111			
Crystal size /mm ⁻³	0.35×0.25×0.05	0.30×0.10×0.02			
Diffractometer	SMART APEX II,	SMART APEX I,			
	Bruker AXS	Bruker AXS			
X-ray radiation, λ /Å	0.71073				
Absorption correction	SADABS ^[N2]				
2θ range /°	3.6-72.8	3.7-52.9			
Index range	$-19 \le h \le 19$	$-7 \le h \le 9$			
	$-9 \le k \le 9$	$-4 \le k \le 4$			
	$-13 \le l \le 13$	$-26 \le l \le 21$			
Reflection collected	9359	2888			
Data, R _{int}	2555, 0.018	1226, 0.050			
No. of parameters	89	82			
Transmission: t_{max}, t_{min}	0.977, 0.854	0.876, 0.236			
$R_1[F^2 > 2\sigma(F^2)]$	0.026	0.092			
$wR(F^2)$	0.072	0.256			
$\Delta ho_{ m max}$, $\Delta ho_{ m min}$ /e Å $^{-3}$	0.623, -0.413	2.730, -2.5385			
Deposition no. ^[N4]	CCDC-975935	CCDC-975934			

Table S1: Crystal data and structure refinement data of $C_{12}H_8S_2$ (1), and $C_{12}H_6S_2Br_2$ (2).

Table S2: List of intermolecular short contacts in the crystal structure of $C_{12}H_8S_2$ (1)

Number	Atom1	Atom2	Distance betw. Atom 1 and Atom 2	Deviation from the sum of VdW radii
1	S1	S1	3.524	-0.076
2	S1	S1	3.524	-0.076
3	C1	H3	2.79	-0.11
4	C2	S1	3.373	-0.127
5	C7	S1	3.393	-0.107
6	H3	C1	2.79	-0.11
7	S1	C2	3.373	-0.127
8	S1	C7	3.393	-0.107
9	S1	C2	3.373	-0.127
10	S1	C7	3.393	-0.107
11	H3	C1	2.79	-0.11
12	C2	S1	3.373	-0.127
13	C7	S1	3.393	-0.107
14	C1	H3	2.79	-0.11

Table S3: List of intermolecular short contacts in the crystal structure of $C_{12}H_6S_2Br_2(2)$

Number	Atom1	Atom2	Distance betw. Atom 1 and Atom 2	Deviation from the sum of VdW radii
1	S	H2	2.901	-0.099
2	H2	S	2.901	-0.099
3	S	S	3.533	-0.067
4	S	S	3.533	-0.067
5	S	H2	2.901	-0.099
6	H2	S	2.901	-0.099
7	Br	Br	3.567	-0.133
8	Br	Br	3.567	-0.133
9	Br	Br	3.567	-0.133
10	Br	Br	3.567	-0.133

Cluster		Wavelength	Excitation	Oscillator Strength
		(nm)	Energy (eV)	comator of cright
		285.8	4.339	0.157799852
	Ð	269.0	4.609	0.401129875
		256.7	4.830	0.00000698
(a)		251.3	4.934	0.00000114
(u)		236.8	5.236	0.000004518
		229.4	5.404	0.556090435
		226.2	5.482	0.000113073
		215.1	5.764	0.00000011
		292.2	4.243	0.221954479
		291.7	4.250	0.007802587
	a to tot	291.3	4.257	0.043475669
(h)	AN I I WA	290.4	4.270	0.104962705
(6)		288.7	4.295	0.118861134
		288.3	4.301	0.201063722
		276.1	4.490	0.007754439
		275.3	4.504	0.002117757
		296.9	4.176	0.132486582
		295.7	4.193	0.193087190
		294.2	4.214	0.188695415
(c)		293.1	4.230	0.160899494
(C)		291.7	4.251	0.131175045
		290.5	4.268	0.127739091
		277.3	4.471	0.003366957
		276.9	4.478	0.000058254
		301.0	4.119	0.137298857
		295.3	4.198	0.000001432
		294.5	4.210	0.157611699
(d)		293.7	4.222	0.191204193
(u)	and the second second	293.6	4.222	0.000261239
	8	293.2	4.228	0.451428326
		292.5	4.239	0.000003746
		279.5	4.436	0.019843874
		285.4	4.344	0.308840938
	*	271.5	4.567	0.504294352
		259.7	4.774	0.000014016
(a)		254.6	4.870	0.00000011
(e)	\sim	237.9	5.211	0.000104838
		234.5	5.287	0.813448074
	rv	228.8	5.418	0.000249587
		225.3	5.502	0.00000029

Table S4: Excitation wavelengths, energies and dipole transition moments

		305.6	4.058	0.001608577
		304.8	4.067	0.000163406
		294.3	4.213	0.003556357
(f)		293.3	4.228	0.248604719
(1)	the second second	293.1	4.231	0.070201701
		292.6	4.238	0.005454568
		288.6	4.296	0.381581689
		288.2	4.302	0.026912082
		309.7	4.004	0.00000002
		305.7	4.055	0.000167038
		300.1	4.131	0.00000055
(g)		295.5	4.195	0.046523379
(8)	R I I I I I	293.4	4.225	0.000001192
	NAIPR	293.2	4.228	0.161410756
		291.7	4.250	0.00000193
		291.2	4.257	0.044767617
		305.8	4.054	0.00000015
	-	305.2	4.063	0.001535109
		294.9	4.205	0.033673319
(b)		293.6	4.222	0.125459900
(11)		293.6	4.223	0.000089662
		292.9	4.234	0.00000025
		289.1	4.289	0.000003574
		288.7	4.295	0.197118424
		310.1	3.998	0.000015882
		307.2	4.036	0.00000007
		302.8	4.095	0.000252301
π-stacked		297.8	4.163	0.00000093
heptamer		295.2	4.200	0.087916493
		293.4	4.226	0.000037159
		293.3	4.227	0.137208286
		292.0	4.246	0.00000228

- [S1] M. Saito, I. Osaka, E. Miyazaki, K. Takimiya, H. Kuwabara and M. Ikeda, *Tetrahedron Letters*, 2011, 52, 285-288.
- [S2] S. Shinamura, I. Osaka, E. Miyazaki, A. Nakao, M. Yamagishi, J. Takeya and K. Takimiya, J. Am. Chem. Soc., 2011, 133, 5024-5035.
- [S3] Bruker Suite, Version 2008/3, Bruker AXS Inc., Madison USA 2008.
- [S4] G. M. Sheldrick, SADABS *Bruker AXS area detector scaling and absorption*, Version 2008/1, University of Göttingen, Germany **2008**.
- [S5] G. M. Sheldrick, Acta Crystallogr., Sect. A 2008, 64, 112-122.
- [S6] Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication CCDC-975935 and CCDC-975934. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax.: (internat.) + 44 1223/336-033; e-mail: deposit@ccdc.cam.ac.uk].