Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2014

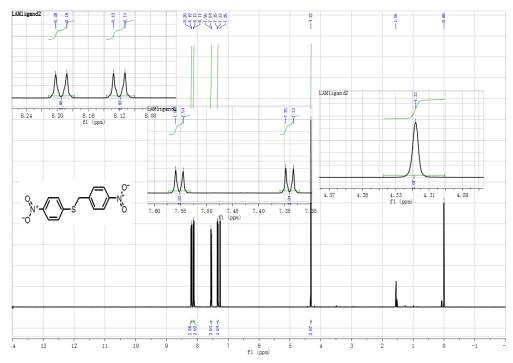
Supporting Information

Efficient Solvent-Controlled Crystallization of Pure Polymorphs of 1-Nitro-4-(4-nitrophenylmethylthio)benzene

Chong-Qing Wana*, Ai-Min Lia, Shaeel A. Al-Thabaitib, Thomas C. W. Makb,c

[a] Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, P. R. China. [b] Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia. [c] Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, P. R. China.

^{*}Author for correspondence: Chong-Qing Wan, email: wancq@cnu.edu.cn



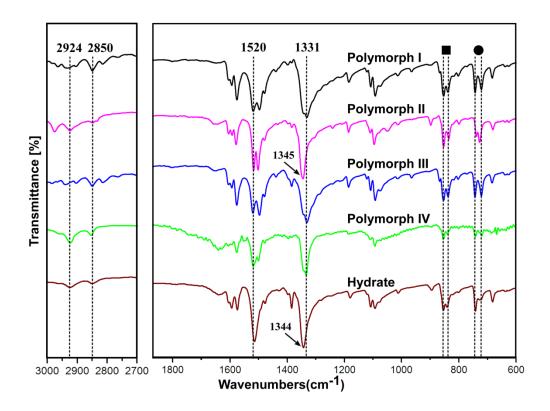

Figure S1. 1 H-NMR spectrum of NNB.

Table S1. Summary of crystallization methods for I-IV and the monohydrate of NNB.

Solvent	Volume ratio	Procedure	Product		
H ₂ O (protic polar)	1	Cooling the hot solution to room	Form I		
		temperature and slow evaporation the			
		solvent			
CH ₃ OH (protic polar)	1	As above	Form I		
CH ₃ CH ₂ OH (protic polar)	1	As above	Form I		
1-Butanol (protic polar)	1	As above	Form I		
CH ₂ Cl ₂ (aprotic polar)/CH ₃ OH	3:1	Slow evaporation of a mixed	Form I		
(protic polar)		solvent at room temperature			
CH ₂ Cl ₂ (aprotic polar)/Ethyl	3:1	As above	Form I		
acetate (aprotic polar)					
Ethyl acetate (aprotic polar)	1	Slow evaporation of a neat	Form I		
		solvent at room temperature			
Acetone (aprotic polar)	1	As above	Form I		
Toluene (non-polar)	1	As above	Form II		
THF (aprotic polar)	1	As above	Form III		
CH ₂ Cl ₂ (aprotic polar)	1	As above	Form III		
CHCl ₃ (aprotic polar)	1	As above	Form III		
Acetonitrile (aprotic polar)	1	As above	Form III		

Supporting Information

1,4-Dioxane (non-polar)	1	As above	Form III
n-Hexane (non-polar)	1	Cooling the hot solution to room	Form III
		temperature and slow evaporation of the	
		solvent	
Benzene (Nonpolar)	1	As above	Form III
CH ₂ Cl ₂ (aprotic polar)/Acetone	3:1	Dissolving NNB in the mixed solvent	Form IV
(polar aprotic)		sealed in a Teflon-lined reactor, and heating	
		at 80°C for 7 days, then cooling at a rate of	
		10°C/h to room temperature	
DMF (aprotic polar)	1	Slow evaporation of a solution at room	Hydrate
		temperature for about three weeks	

Figure S2 FT-IR spectra of **I-IV** and the monohydrate forms. ●and ■ indicate the double bands of 835~853 cm⁻¹ and 721~742 cm⁻¹ ranges, respectively.

Supporting Information

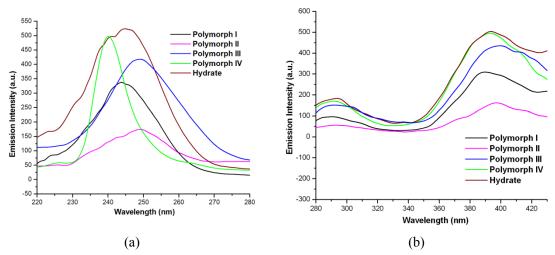
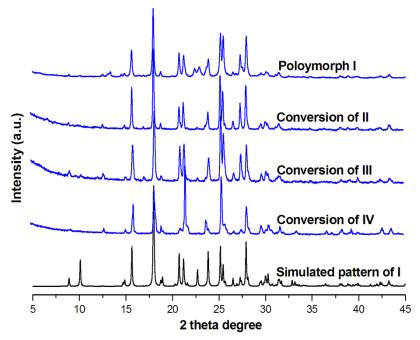



Figure S3 Fluorescence excitation (a) and emission spectra (b) of polymorph I-IV and the monohydrate.

Figure S4 Powder X-ray diffraction measurements of the solid phase conversions of polymorphs **II-IV** (blue) after heated at 85°C for one day. The experimental and simulated patterns of form **I** were shown in comparison.

Table S2. Crystallographic data of polymorphs I–IV and monohydrate

	Compound	npound I			II		III		IV			Monohydrate			
	Empirical formula		$C_{13}H_{10}N_{2}O_{4}S \\$		$C_{13}H_{10}N_{2}$	$C_{13}H_{10}N_2O_4S$		$C_{13}H_{10}N_2O_4S$		$C_{13}H_{10}N_2O_4S$			$C_{13}H_{12}N_2O_5S$		
	Formula weight		290.29		290.29			290.29		290.29			308.29		
	Crystal size		$0.35 \times 0.30 \times 0.25$		$0.35 \times 0.20 \times 0.15$			$0.35 \times 0.30 \times 0.25$		$0.25 \times 0.20 \times 0.15$			$0.35 \times 0.30 \times 0.25$		
	Crystal system		Monoclinic		Monoclinic			Monoclinic		Triclinic			Monoclinic		
	Space group		P2 ₁ /c (No. 14)		$P2_1/c$ (No	(No. 14)		C2/c (No. 15)		P-1 (No. 2)			P2 ₁ /c (No. 14)		
	a (Å)	(Å) 6.1653(7)			4.0558(3)			24.4212(6)		13.1030(7)			3.9606(3)		
	b (Å) 17.4934(18)			20.4472(16)			8.3161(2)		13.8660(8)			12.1751(8)			
	c (Å) 12.4757(13)			16.1833(12)			13.2973(4)		15.6862(10)			31.027(2)			
	α(°) 90.00			90.00			90.00		81.809(4)			90.00			
	β(°) 104.928(7)			102.878(5)			92.341(2)		71.861(3)			93.629(3)			
	γ(°) 90.00			90.00			90.00		79.628(3)			90.00			
	$V(Å^3)$	$V(Å^3)$ 1300.1(2)			1308.32(17)			2698.28(12)		2652.7(3)			1493.14(18)		
	Z', Z 1, 4		1, 4	1, 4			1, 8			4, 8			1, 4		
	$D_{\rm calc}$ (g/cm ³)		1.483		1.474			1.429		1.454			1.363		
	μ (Mo-K α) (mm ⁻¹) F (000) Reflections collected Independent reflections Parameters Goodness-of-fit $R_1 [I > 2\sigma(I)]^a$		0.264		0.262 600 9404 2296 (0.0359) 181 1.078 0.0489			0.254 1200 11775 3224(0.0303) 181 1.000 0.0461		0.258 1200 24715 9332(0.1028) 722 0.987 0.0877			0.238 632 8925 2591 (0.0225)		
			600												
			29694												
			3098(0.0305)												
			200										201 1.064 0.0576		
			1.095												
			0.0788												
	wR_2 (all data) ^b		0.2695		0.1365			0.1494		0.2893		0.1888			
${}^{a}R_{1}$	=	$\Sigma F_{ m o} $	-	$ F_{\rm c} /\Sigma F_{\rm o} $.		$^{b}wR_{2}$	=	$\{\Sigma$	$[w(F_0^2)]$	_	$F_{\rm c}^{2})^{2}$]/\(\Sigma\)	2	$[w(F_0^2)^2]$ ^{1/2} .	