ESI to accompany:

Environmental control in the assembly of metallomacrocycles and one-dimensional polymers with 4,2':6':4''-terpyridine linkers and zinc(II) nodes

Edwin C. Constable, ${ }^{a}$ Catherine E. Housecroft,*a Alessandro Prescimone, ${ }^{a}$ Srboljub Vujovic ${ }^{a}$ and Jennifer A. Zampese

$\begin{array}{lllllllllllllllll}9.0 & 8.9 & 8.8 & 8.7 & 8.6 & 8.5 & 8.4 & 8.3 & 8.2 & 8.1 & 8.0 & 7.9 & 7.8 & 7.7 & 7.6 & 7.5 & 7.4\end{array}$
Fig. S1 $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra of DMF- d_{7} solutions of anthracene, $\mathbf{1}$ and $\left[\left\{\mathrm{ZnCl}_{2}(\mathbf{1})\right\}_{6}\right]-\mathrm{A} .{ }^{* *}=$ residual DMF; ${ }^{*}=1,2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$. Chemical shifts in ∂ / ppm. See Scheme 1 for atom labelling.

Fig. S2 $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra of DMF- d_{7} solutions of perylene, $\mathbf{1}$ and $\left[\left\{\mathrm{ZnCl}_{2}(\mathbf{1})\right\}_{6}\right]-\mathrm{P} .{ }^{* *}=$ residual DMF; ${ }^{*}=1,2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$. Chemical shifts in ∂ / ppm.

Fig. S3 ORTEP diagram of the asymmetric unit in $\left[\mathrm{ZnCl}_{2}(\mathbf{1})\right]_{n}$ (ellipsoids plotted at 30% probability level and H atoms omitted for clarity). Selected bond lengths: $\mathrm{Zn} 1-\mathrm{N} 1 \mathrm{a}=2.049(3), \mathrm{Zn} 1-\mathrm{N} 3 \mathrm{~d}^{\mathrm{i}}=2.069(3), \mathrm{Zn} 1-\mathrm{Cl} 2=2.1952(14), \mathrm{Zn} 1-\mathrm{Cl} 1=$
$2.2303(15), \mathrm{Zn} 2-\mathrm{N} 1 \mathrm{~b}=2.026(3), \mathrm{Zn} 2-\mathrm{N} 3 \mathrm{a}=2.061(3), \mathrm{Zn} 2-\mathrm{Cl} 3=2.2065(11)$,
$\mathrm{Zn} 2-\mathrm{Cl} 4=2.2354(11), \mathrm{Zn} 3-\mathrm{N} 1 \mathrm{c}=2.028(4), \mathrm{Zn} 3-\mathrm{N} 3 \mathrm{~b}=2.062(3), \mathrm{Zn} 3-\mathrm{Cl} 6=$
$2.2056(16), \mathrm{Zn} 3-\mathrm{Cl} 5=2.2279(15), \mathrm{Zn} 4-\mathrm{N} 3 \mathrm{c}=2.063(4), \mathrm{Zn} 4-\mathrm{N} 1 \mathrm{~d}=2.071(3)$,
$\mathrm{Zn} 4-\mathrm{Cl} 8=2.1964(12), \mathrm{Zn} 4-\mathrm{Cl} 7=2.2140(13)$ Å. Symmetry code i $=x, y, 1+z$.

Fig. S4 ORTEP diagram of the asymmetric unit in $\left[\mathrm{ZnCl}_{2}(2)\right]_{n}$ (ellipsoids plotted at 30\% probability level and H atoms omitted for clarity). Selected bond lengths: Zn1A-N1a = 2.043(3), Zn1a ${ }^{\text {i }}-\mathrm{N} 3 \mathrm{~d}=2.068(4), \mathrm{Zn} 1 \mathrm{a}-\mathrm{Cl} 1 \mathrm{a}=2.2133(14), \mathrm{Zn} 1 \mathrm{a}-$ $\mathrm{Cl} 2 \mathrm{a}=2.2221(16), \mathrm{N} 3 \mathrm{a}-\mathrm{Zn} 1 \mathrm{~b}=2.057(4), \mathrm{Zn} 1 \mathrm{~b}-\mathrm{N} 1 \mathrm{~b}=2.068(4), \mathrm{Zn} 1 \mathrm{~b}-\mathrm{Cl} 2 \mathrm{~b}=$ 2.2125(13), Zn1b-Cl1b = 2.2187(13), N3b-Zn1c = 2.038(4), Zn1c-N1c = 2.076(4), $\mathrm{Zn} 1 \mathrm{c}-\mathrm{Cl} 2 \mathrm{c}=2.2114(15), \mathrm{Zn} 1 \mathrm{c}-\mathrm{Cl} 1 \mathrm{c}=2.2115(14), \mathrm{N} 3 \mathrm{c}-\mathrm{Zn} 1 \mathrm{~d}=$ 2.052(3), Zn1d-N1d = 2.077(4), Zn1d-Cl2d = 2.2049(14), Zn1d-Cl1d = 2.2082(14) Å. Symmetry code i $=x, y,-1+z$.

Fig. S5 ORTEP diagram of the two independent $\left\{\mathrm{ZnI}_{2}(\mathbf{1})\right\}$ units in the asymmetric unit in $\left[2\left\{\mathrm{ZnI}_{2}(\mathbf{1})\right\} \cdot \mathrm{CHCl}_{3}\right]_{n}$ (ellipsoids plotted at 40% probability level and H atoms omitted for clarity). Selected bond lengths: $\mathrm{Zn} 1 \mathrm{a}-\mathrm{N} 1 \mathrm{a}=$ 2.045(6), Zn1a-N3a ${ }^{\text {i }}=2.053(6), \mathrm{Zn} 1 \mathrm{a}-\mathrm{I} 1 \mathrm{a}=2.5473(9), \mathrm{Zn} 1 \mathrm{a}-\mathrm{I} 2 \mathrm{a}=2.5576(9)$, Zn1b-N1b $=2.048(6)$, Zn1b-N3b ${ }^{\text {ii }}=2.070(6)$, Zn1b-I1b $=2.5476(10)$, Zn1b-I2b $=2.5623(10)$ Å. Symmetry codes $\mathrm{i}=x,{ }^{1} / 2-y,-1 / 2+z ; \mathrm{ii}=x,{ }^{3} / 2-y,-1 /{ }^{2}+z$.

