Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2014

Supporting Information for

Metal-Binding Studies of Linear Rigid-Axle [2]Pseudorotaxanes with In-Situ Generated Anionic Metal Halide Complexes

Isurika R. Fernando^{a,b}, Yirong Mo^a and Gellert Mezei^{a,*}

a) Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008, USA b) Current address: Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA * E-mail: gellert.mezei@wmich.edu

Details of the crystal growing experiments.

 $1(ZnCl_3)_2 \cdot H_2O \cdot 0.5CH_3OH$. Dark blue crystals were obtained after two weeks from a solution of $ZnCl_2$ (0.8 mg, 0.0057 mmol) in CH₃OH (1.8 mL) layered over a solution of PyBP·[NO₃]₂ (5 mg, 0.011 mmol) and BN32C8 (5.5 mg, 0.010 mmol) in a 1:1 mixture of CH₃OH/CHCl₃ (1.8 mL).

 $2(ZnCl_3)_2$. Dark blue crystals were obtained after two weeks from a solution of $ZnCl_2$ (0.8 mg, 0.0057 mmol) in CH₃OH (1.5 mL) layered over a solution of PyBP·[NO₃]₂ (2.5 mg, 0.0057 mmol) and BN38C10 (3.2 mg, 0.0051 mmol) in a 1:1 mixture of CH₃OH/CHCl₃ (1.5 mL).

 $1(\text{ZnBr}_3)_2 \cdot \text{H}_2\text{O}$. Dark blue crystals were obtained after two weeks from a solution of ZnBr_2 (1.3 mg, 0.0057 mmol) in CH₃OH (1.5 mL) layered over a solution of PyBP·[NO₃]₂ (2.5 mg, 0.0057 mmol) and BN32C8 (2.8 mg, 0.0050 mmol) in a 1:1 mixture of CH₃OH/CHCl₃ (1.5 mL).

2(ZnBr₃)₂. Dark blue crystals were obtained after two weeks from a solution of ZnBr₂ (1.3 mg, 0.0057 mmol) in CH₃OH (1.8 mL) layered over a solution of PyBP·[NO₃]₂ (1.3 mg, 0.0028 mmol) and BN38C10 (1.6 mg, 0.0025 mmol) in a 1:1 mixture of CH₃OH/CHCl₃ (0.75 mL).

2·[CdBr₄]·0.5CHCl₃·1.5CH₃OH·0.5H₂O. Brown-yellow crystals were obtained after two weeks from a solution of CdBr₂ (3.9 mg, 0.0114 mmol) in CH₃OH (1.5 mL) layered over a 1:1 mixture of PyBP·[NO₃]₂ (2.5 mg, 0.0057 mmol) and BN38C10 (3.2 mg, 0.0051 mmol) in a 1:1 mixture of CH₃OH/CHCl₃ (1.5 mL).

3·[CdBr₄]. Dark maroon-red crystals were obtained after two weeks from a solution of CdBr₂ (3.1 mg, 0.0091 mmol) in CH₃OH (1.5 mL) layered over a 1:1 mixture of PyBP·[NO₃]₂ (2.0 mg, 0.0046 mmol) and BPP34C10 (2.0 mg, 0.0037 mmol) in a 1:1 mixture of CH₃OH/CHCl₃ (1.5 mL).

3·[CdI₄]. Dark maroon-red crystals were obtained after two weeks from a solution of CdI₂ (4.2 mg, 0.0114 mmol) in CH₃OH (1.5 mL) layered over a solution of PyBP·[NO₃]₂ (2.5 mg, 0.0057 mmol) and BPP34C10 (2.5 mg, 0.0047 mmol) in CH₃OH (1.5 mL).

1·[Hg₂Br₆]. A solution of HgBr₂ (4.2 mg, 0.0115 mmol) in CH₃OH (1.5 mL) was layered over a solution of PyBP·[NO₃]₂ (2.5 mg, 0.0057 mmol) and BN32C8 (2.8mg, 0.0057 mmol) in a 1:1 mixture of CH₃OH/CHCl₃ (1.5 mL). Very small, greenish-blue crystals formed after one week (not suitable for X-ray diffraction). Upon standing, the greenish-blue crystals slowly re-dissolved, while larger (X-ray quality), dark blue/red dichroic crystals grew over the next two weeks.

2(Hg₂Br₆)₂·PyBP·CH₃OH. Dark violet/yellow dichroic crystals were obtained after three weeks from a solution of HgBr₂ (4.2 mg, 0.0114 mmol) in CH₃OH (1.5 mL) layered over a solution of PyBP·[NO₃]₂ (2.5 mg, 0.0057 mmol) and BN38C10 (3.2mg, 0.0051 mmol) in a 1:1 mixture of CH₃OH/CHCl₃ (1.5 mL).

1·[Hg₂I₆]. A 2:3 mixture of CH₃OH and CHCl₃ was layered over a solution of PyBP·[NO₃]₂ (2.0 mg, 0.0046 mmol) and BN32C8 (2.8 mg, 0.0057 mmol) in a 1:1 mixture of CH₃OH/CHCl₃ (1.5 mL), followed by a third layer of HgBr₂ (4.2 mg, 0.0092 mmol) in CH₃OH (1.5 mL). No crystals formed after one week in the freezer (-20 °C). Upon warming to room temperature, dark blue/yellow dichroic, X-ray quality crystals were obtained after two weeks.

2·[Hg₂I₆]·3CH₃OH. A 2:3 mixture of CH₃OH and CHCl₃ was layered over a solution of PyBP·[NO₃]₂ (2.5 mg, 0.0057 mmol) and BN38C10 (3.2mg, 0.0051 mmol) in a 1:1 mixture of CH₃OH/CHCl₃ (1.5 mL), followed by a third layer of HgI₂ (5.2 mg, 0.0114 mmol) in CH₃OH (1.5 mL). The vial was kept in the freezer at −20 °C for one week. White needles crystallized on the bottom of the vial. Upon warming to room temperature (30-40 min), the white crystalline material re-dissolved. After two weeks at room temperature, dark green/brown dichroic, X-ray quality crystals were obtained.

[PyBP][CdI₄]. Orange-red crystals were obtained after two weeks from slow diffusion of a three-layer solution setup. 0.8 mL CH₃OH/CHCl₃ (2:3) solvent mixture was layered over a solution of PyBP·[NO₃]₂ (2.0 mg, 0.0057 mmol) and BN38C10 (2.6 mg, 0.0040 mmol) in 1.5 mL CHCl₃/CH₃OH (1:1), and a third layer of CdI₂ (3.6 mg, 0.0091 mmol) in CH₃OH (1.5 mL) was added on top.

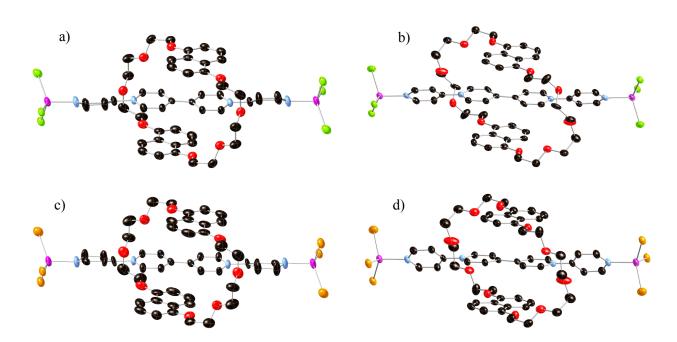

[PyBP](ZnI₃)₂·3CH₃OH. Dark red crystals were obtained after five days from a solution of ZnI₂ (3.6 mg, 0.0113 mmol) and KI (1.9 mg, 0.0113 mmol) in CH₃OH (1.5 mL) layered over a solution of PyBP·[NO₃]₂ (2.5 mg, 0.0057 mmol) and BPP34C10 (3.1 mg, 0.0057 mmol) in CH₃OH (1.5 mL).

Table S1. Products of the crystal growing setups with MX_2/KX .

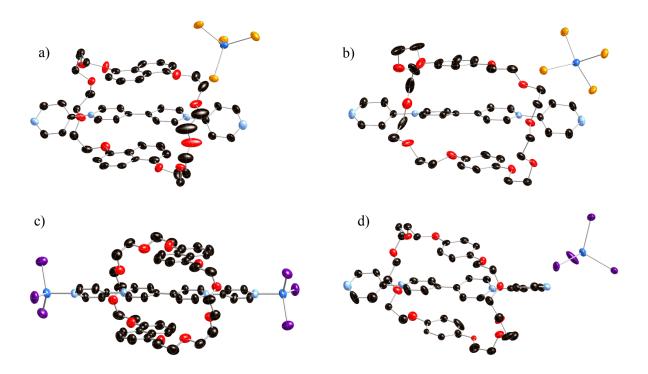
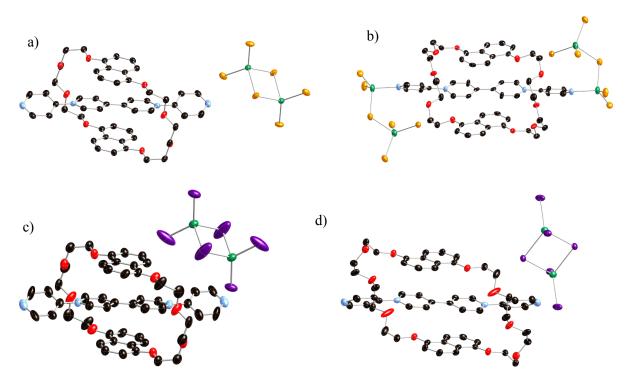
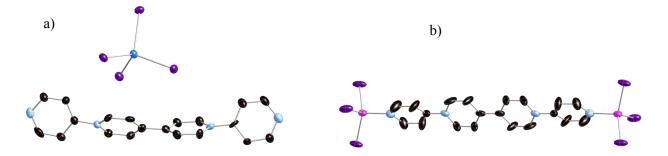
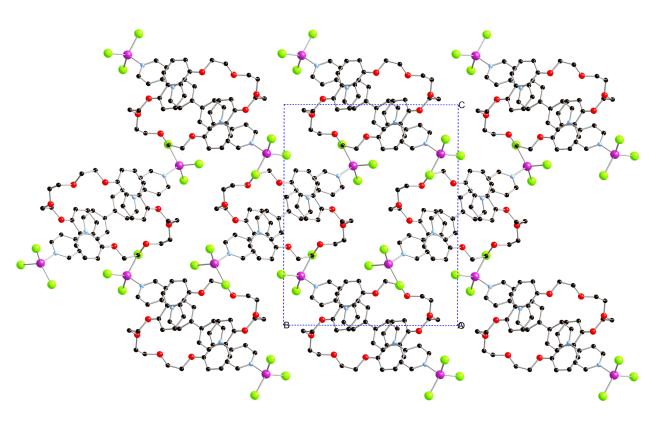
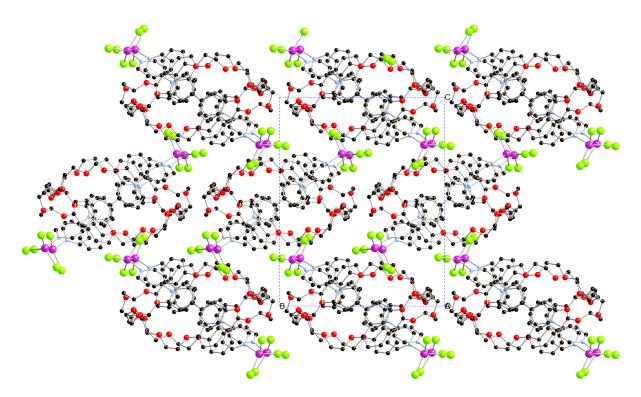

MX ₂ /KX	[2]Pseudorotaxane						
	[PyBP/BPP34C10] ²⁺		[PyBP/BN38C10] ²⁺		[PyBP/BN32C8] ²⁺		
	solution	precipitate/ crystal	solution	precipitate/ crystal	solution	precipitate/crystal	
ZnCl ₂ /KCl	Colorless solution	Light yellow precipitate	Light yellow solution	Light yellow precipitate	Light yellow solution	Colorless crystals and light yellow precipitate	
ZnBr ₂ /KBr	Colorless solution	Light brown crystalline solid	Colorless solution	Light yellowish-green solid	Light blue solution	Colorless crystals and light yellow precipitate	
ZnI ₂ /KI	Light yellow solution	Red crystals	Light yellow solution	Red crystalline aggregates	Light yellow solution	Dark blue precipitate	
CdCl ₂ /KCl	Colorless solution	Light yellowish- brown precipitate	Colorless solution	Light yellowish- brown solid	Colorless solution	Light yellowish brown solid	
CdBr ₂ /KBr	Colorless solution	Light yellow precipitate	Colorless solution	Light yellow precipitate	Colorless solution	Light yellow precipitate	
CdI ₂ /KI	Bright yellow solution	Yellow crystals	Bright yellow solution	Yellow crystals	Bright yellow solution	Yellow crystals	
HgCl ₂ /KCl	Light yellow solution	Light golden- brown needle shaped crystals	Light yellow solution	Light golden- brown needle shaped crystals	Light yellow solution	Light golden-brown needle shaped crystals	
HgBr ₂ /KBr	Colorless solution	Light yellow solid	Colorless solution	Light yellow solid	Colorless solution	Light yellow solid	
HgI ₂ /KI	Light yellow solution	Maroon-red precipitate	Light yellow solution	Maroon-red precipitate	Light yellow solution	Three different solid aggregates, orange, red and dark-blue	

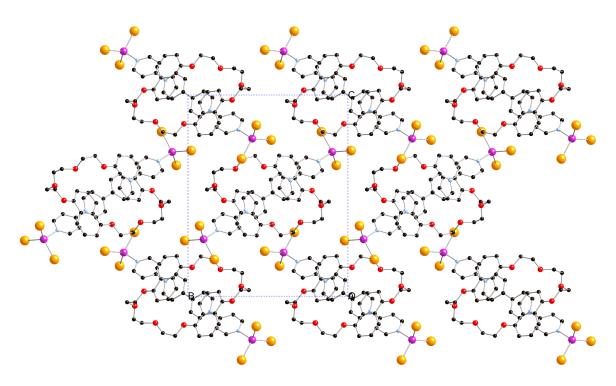
Table S2. Identity of the solid crystallization products with MX₂/KX, based on ¹H NMR analysis

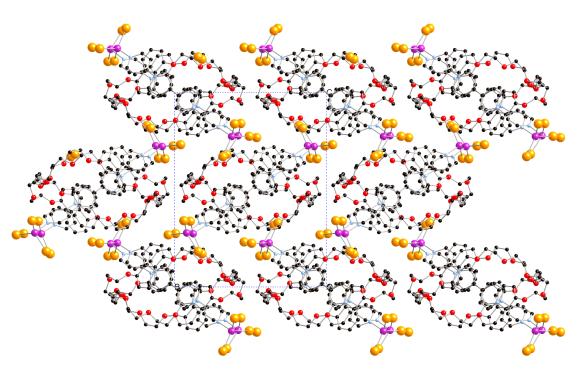

MV /IZV	[2]Pseudorotaxane					
MX ₂ /KX	[PyBP/BPP34C10] ²⁺	[PyBP/BN38C10] ²⁺	[PyBP/BN32C8] ²⁺			
ZnCl ₂ /KCl	[PyBP][NO ₃] ₂	[PyBP][NO ₃] ₂	[PyBP][NO ₃] ₂ and BN32C8			
ZnBr ₂ /KBr	[PyBP][NO ₃] ₂	[PyBP][NO ₃] ₂	[PyBP][NO ₃] ₂ and BN32C8			
ZnI ₂ /KI	[PyBP][NO ₃] ₂	[PyBP][NO ₃] ₂	[PyBP][NO ₃] ₂ and BN32C8			
CdCl ₂ /KCl	[PyBP][NO ₃] ₂	[PyBP][NO ₃] ₂	[PyBP][NO ₃] ₂ and BN32C8			
CdBr ₂ /KBr	[PyBP][NO ₃] ₂	[PyBP][NO ₃] ₂ and BN38C10	[PyBP][NO ₃] ₂ and BN32C8			
CdI ₂ /KI	[PyBP][NO ₃] ₂	[PyBP][NO ₃] ₂ and BN38C10	[PyBP][NO ₃] ₂ and BN32C8			
HgCl ₂ /KCl	[PyBP][NO ₃] ₂	[PyBP][NO ₃] ₂	[PyBP][NO ₃] ₂ and BN32C8			
HgBr ₂ /KBr	[PyBP][NO ₃] ₂	[PyBP][NO ₃] ₂	[PyBP][NO ₃] ₂ and BN32C8			
HgI ₂ /KI	[PyBP][NO ₃] ₂	[PyBP][NO ₃] ₂	[PyBP][NO ₃] ₂ and BN32C8			

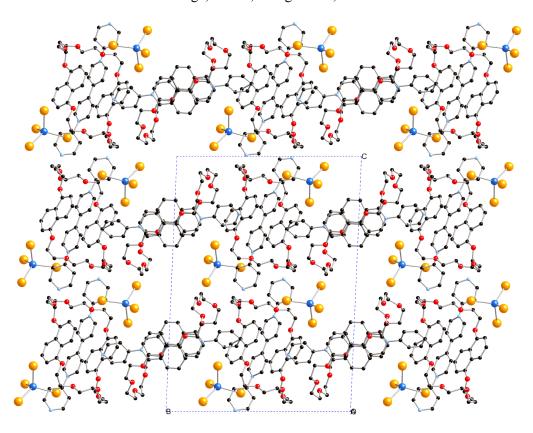

Figure S1. Thermal ellipsoid plots (50%) for a) **1**(ZnCl₃)₂, b) **2**(ZnCl₃)₂, c) **1**(ZnBr₃)₂·CH₃OH and d) **2**(ZnBr₃)₂. H-atoms and solvent molecules are omitted for clarity. Color code: Zn-magenta; Cl-lime green; Br-orange; O-red; N-light blue; C-black.

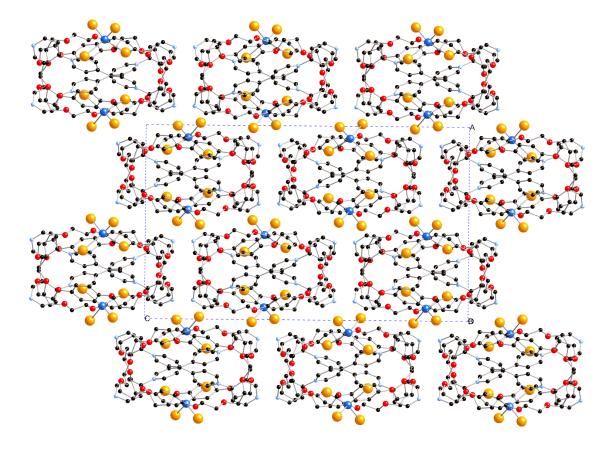

Figure S2. Thermal ellipsoid plots (50%) for $2 \cdot [CdBr_4] \cdot 0.5CHCl_3 \cdot 1.5CH_3OH \cdot 0.5H_2O$, b) $3 \cdot [CdBr_4]$, c) $2(CdI_3)_2 \cdot 2CH_3OH$ and d) $3 \cdot [CdI_4]$. H-atoms and solvent molecules are omitted for clarity. Color code: Cd-blue; Br-orange; I-violet; O-red; N-light blue; C-black.

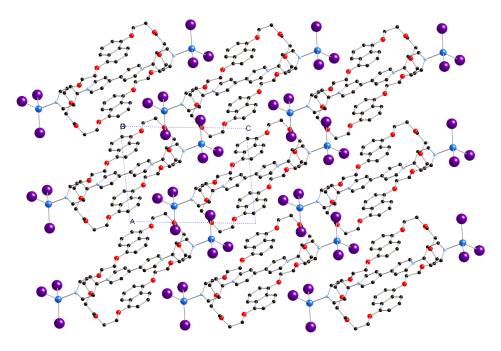

Figure S3. Thermal ellipsoid plots (50%) for a) $\mathbf{1} \cdot [Hg_2Br_6]$, b) $\mathbf{2}(Hg_2Br_6)_2 \cdot PyBP \cdot CH_3OH$, c) $\mathbf{1} \cdot [Hg_2I_6]$ and d) $\mathbf{2} \cdot [Hg_2I_6] \cdot 3CH_3OH$. H-atoms and solvent molecules are omitted for clarity. Color code: Hg-green; Br-orange; I-violet; O-red; N-light blue; C-black.

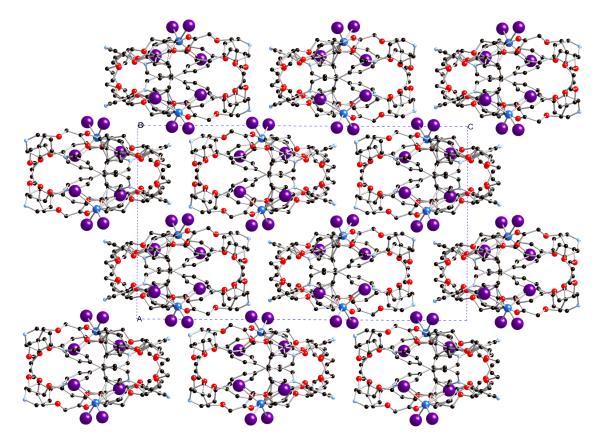

Figure S4. Thermal ellipsoid plots (50%) for a) PyBP·[CdI₄] and b) PyBP(ZnI₃)₂·3CH₃OH. H-atoms and solvent molecules are omitted for clarity. Color code: Cd-blue; Zn-magenta; I-violet; N-light blue; C-black; H-pink.

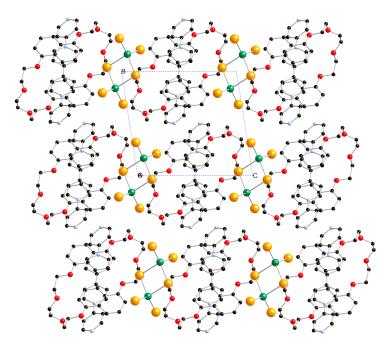

Figure S5. Packing diagram of **1**(ZnCl₃)₂. H-atoms are omitted for clarity. Color code: Zn-magenta; Cl-lime green; O-red; N-light blue; C-black.

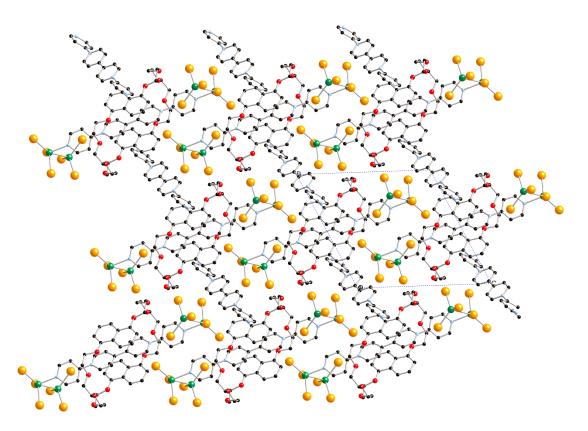

Figure S6. Packing diagram of **2**(ZnCl₃)₂. H-atoms are omitted for clarity. Color code: Zn-magenta; Cl-lime green; O-red; N-light blue; C-black.

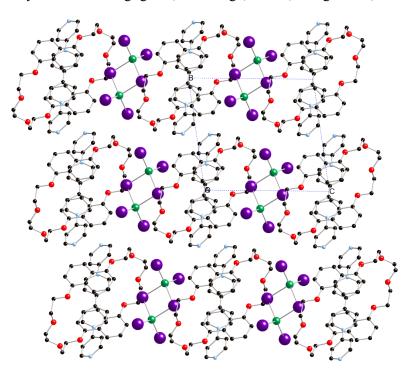

Figure S7. Packing diagram of **1**(ZnBr₃)₂·CH₃OH. H-atoms and solvent molecules are omitted for clarity. Color code: Zn-magenta; Br-orange; O-red; N-light blue; C-black.

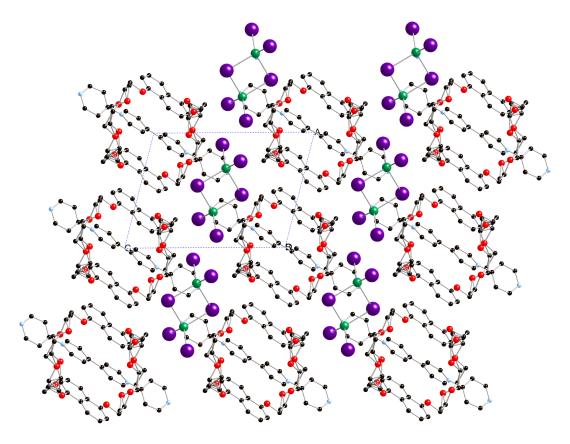

Figure S8. Packing diagram of **2**(ZnBr₃)₂. H-atoms are omitted for clarity. Color code: Zn-magenta; Br-orange; O-red; N-light blue; C-black.

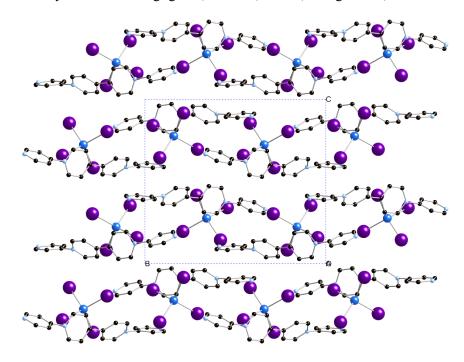

Figure S9. Packing diagram of $2 \cdot [CdBr_4] \cdot 0.5CHCl_3 \cdot 1.5CH_3OH \cdot 0.5H_2O$. H-atoms and solvent molecules are omitted for clarity. Color code: Cd-blue; Br-orange; O-red; N-light blue; C-black.


Figure S10. Packing diagram of **3**·[CdBr₄]. H-atoms are omitted for clarity. Color code: Cd-blue; Br-orange; O-red; N-light blue; C-black.


Figure S11. Packing diagram of **2**(CdI₃)₂·2CH₃OH. H-atoms and solvent molecules are omitted for clarity. Color code: Cd-blue; I-violet; O-red; N-light blue; C-black.


Figure S12. Packing diagram of **3**·[CdI₄]. H-atoms are omitted for clarity. Color code: Cd-blue; I-violet; O-red; N-light blue; C-black.


Figure S13. Packing diagram of $1 \cdot [Hg_2Br_6]$. H-atoms are omitted for clarity. Color code: Hg–green; Br–orange; O–red; N–light blue; C–black.


Figure S14. Packing diagram of **2**(Hg₂Br₆)₂·PyBP·CH₃OH. H-atoms and solvent molecules are omitted for clarity. Color code: Hg–green; Br–orange; O–red; N–light blue; C–black.

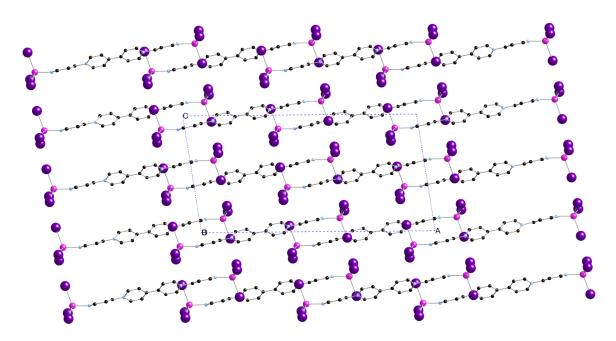

 $\label{eq:Figure S15} \textbf{Figure S15}. \ \ Packing \ diagram \ of \ \textbf{1} \cdot [Hg_2I_6]. \ \ H-atoms \ are \ omitted \ for \ clarity. \ \ Color \ code: \ \ Hg-green; \\ I-violet; \ O-red; \ N-light \ blue; \ C-black.$

Figure S16. Packing diagram of $2 \cdot [Hg_2I_6] \cdot 3CH_3OH$. H-atoms and solvent molecules are omitted for clarity. Color code: Hg-green; I-violet; O-red; N-light blue; C-black.

 $\label{eq:Figure S17} \textbf{Figure S17}. \ \ Packing \ diagram \ of \ PyBP \cdot [CdI_4]. \ H-atoms \ are \ omitted \ for \ clarity. \ Color \ code: \ Cd-blue; \\ I-violet; \ N-light \ blue; \ C-black.$

Figure S18. Packing diagram of PyBP(ZnI₃)₂·3CH₃OH. H-atoms and solvent molecules are omitted for clarity. Color code: Zn-magenta; I-violet; N-light blue; C-black.