Electronic Supplementary Information (ESI)

Facile synthesis of TiO₂ hollow spheres composed of high percentage reactive facets for enhanced photocatalytic activity

Bin Wang^{*a,c1} Xiao-Ying Lu^{*b1}, Lawrence K. Yu^{c,d}, Jin Xuan^e, Michael K.H. Leung ^{*a} and Hongfan Guo^f

^a Ability R&D Energy Research Centre, School of Energy and Environment, City University of Hong Kong, Hong Kong, China. E-mail: mkh.leung@cityu.edu.hk Fax: +852-34420688; Tel: +852-34424626

^b Faculty of Science and Technology, Technological and Higher Education Institute of Hong Kong, Hong Kong, China. Email: xylu@vtc.edu.hk Fax: +852-21761554; Tel: +852-21761453

^c Green Energy, Sensing & Integration Group, Hong Kong Applied Science and Technology Research Institute Company Limited, Hong Kong.

Email: bwang@astri.org Fax: +852-34062802; Tel: +852-34062561

^d Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA

^e Institute of Mechanical, Process and Energy Engineering, School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom ^f College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang, China

Fig. S1 TEM image and single crystal electron diffraction pattern of TiO_2 nanosheets obtained from TiO_2 -HS-1

Fig. S2 The survey spectrum of TiO₂-HS-1 hollow spheres

Fig. S3: The size growth of TiO_2 -HS-1 sphere as a function of reaction time in hydrothermal synthesis

Fig. S4 XRD patterns of TiO₂-HS-1 samples collected at different hydrothermal stages

Fig. S5 FE-SEM images of TiO_2 -HS-2 samples collected at different hydrothermal stages (a) and (b): 1 hour; (c) and (d): 2 hours; (e) and (f): 3 hours; (g) and (h): 4 hours; (i) and (j): 6 hours. Arrow: TiO_2 hollow structure

Fig. S6 Digital photos of the as-prepared TiO₂ samples by hydrothermal treatment at 180°C for 24 hours. (a) 0.2 g TiOSO₄+ 0.0625 mL HBF₄+30 mL H₂O, TiOSO₄: HBF₄=5 : 1.5; (b) 0.2 g TiOSO₄+ 0.125 mL HBF₄+30 mL H₂O, TiOSO₄: HBF₄=5 : 3; (c) 0.2 g TiOSO₄+0.25 mL HBF₄+30 mL H₂O, TiOSO₄: HBF₄=5 : 6; (d) 0.2 g TiOSO₄+0.5 mL HBF₄+30 mL H₂O, TiOSO₄: HBF₄=5 : 12; and (e) 0.2 g TiOSO₄+ 0.75 mL HBF₄+30 mL H₂O, TiOSO₄: HBF₄=5 : 18.

Fig. S7 FE-SEM images of the as-prepared TiO₂ samples with various HBF₄ concentration and hydrothermal treatment at 180°C for 24 hours. (a) and (b) 0.2 g TiOSO₄+ 0.0625 mL HBF₄+30 mL H₂O, TiOSO₄: HBF₄=5 : 1.5; (c) and (d) 0.2 g TiOSO₄+ 0.25 mL HBF₄+30 mL H₂O, TiOSO₄: HBF₄=5 : 6

Fig. S8: FE-SEM images of the as-prepared TiO₂ samples with various TiOSO₄ concentration and hydrothermal treatment at 180°C for 24 hours. (a) and (b) 0.1 g TiOSO₄+ 0.125 mL HBF₄+30 mL H₂O, TiOSO₄: HBF₄=2.5 : 3; (c) and (d) 0.8 g TiOSO₄+0.125 mL HBF₄+30 mL H₂O, TiOSO₄: HBF₄=20 : 3

Fig.S9 UV-vis diffuse reflectance spectra of TiO₂ samples

Fig. S10 N_2 adsorption-desorption isotherms and specific surface areas of TiO₂ samples (hollow symbols: N_2 adsorption; solid symbols: N_2 desorption)

Fig. S11 XRD patterns of Degussa P25 sample