Supporting Information

Synthesis of In₂S₃ Microspheres using a Template-free and Surfactant-less Hydrothermal Process and Their Visible Light Photocatalysis

Arpan Kumar Nayak,¹ Seungwon Lee,² Youngku Sohn,² Debabrata Pradhan^{1,*}

¹Materials Science Centre, Indian Institute of Technology, Kharagpur 721 302, W.B., India ²Department of Chemistry, Yeungnam University, Gyeongsan 712-749, Republic of Korea

*deb@matsc.iitkgp.ernet.in

Figure S1. Nitrogen adsorption-desorption isotherm for hollow In_2S_3 microspheres obtained with indium sulfate precursor (adsorption branch, \blacksquare ; desorption branch, \bullet). Inset: BJH pore size distribution obtained from the adsorption branch.

Figure S2. UV-Vis absorption spectra (in reflectance mode) of black color In_2S_3 powder samples prepared with indium chloride, indium sulfate and indium nitrate precursors. Other parameters were kept constant (L-Cystine as S source, oxalic acid, 150°C, and 30 h).

Figure S3. Nitrogen adsorption-desorption isotherm for agglomerated In_2S_3 nanoflakes obtained with indium sulfate precursor without oxalic acid (adsorption branch, \blacksquare ; desorption branch, \bullet). Inset: BJH pore size distribution obtained from the adsorption branch.

Figure S4. FESEM images of products obtained by stirring (a) indium chloride, (b) indium sulfate, (c) indium nitrate, with L-cystine and oxalic acid at room temperature, (d) indium sulfate and L-cystine, without oxalic acid. Inset shows the respective magnified FESEM image.

Figure S5. X-ray diffraction pattern of the product obtained by stirring indium sulfate, Lcystine and oxalic acid at room temperature