Supporting Information

Unexpected 1D self-assembly of carbonate-templated sandwich-like macrocycle-based Ag₂₀S₁₀ luminescent nanoclusters

10

5

Kun Zhou, Chao Qin, Xin-Long Wang,* Kui-Zhan Shao, Li-Kai Yan and Zhong-Min Su*

15

Institute of Functional Material Chemistry, Key Lab of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University; Changchun, 130024, Jilin, China. Fax: (+86) 431-85684009; Tel: (+86) 431-85099108; E-mail: <u>zmsu@nenu.edu.cn</u>.

20

Table of contents

25

30 1. Synthetic procedures	
2. Crystallographic studies	
3. Selected bond lengths (Å) for compound 1	
4. Physical Measurements	

35

1. Synthetic procedures

General comments: AgS'Bu was prepared by using Et₃N as organic solvent and reacted with equivalent amounts of AgNO₃ with HS'Bu according to the literature.¹ In addition, (NH₄)₃[CrMo₆O₂₄H₆]·7H₂O were synthesized according to the literature.² Other reagents and solvents for synthesis were obtained from 5 commercial sources and used without further purification.

{ $[(CO_3^{2-})@Ag_{20}(S'Bu)_{10}(CH_3COO)_8(DMF)_2] \cdot 2H_2O$ }_n (1):

Compound 1 was obtianed by one-pot synthesis, namely, AgS'Bu (0.0644 g, 0.3268 mmol) with $(NH_4)_3[CrMo_6O_{24}H_6]\cdot 7H_2O$ (0.0126 g, 0.0105 mmol), Ni(CH₃COO)₂·4H₂O (0.0306 g, 0.1230 mmol), 10 AgCF₃COO (0.0180 g, 0.0815 mmol) and AgBF₄ (0.0123 g, 0.0632 mmol) were dissolved in ethanol-acetonitrile–dimethylformamide(DMF) (v : v : v=1 : 1 : 1) (15 mL) under stir at room temperature to gain a gray-violet suspension (pH \approx 7.5). Then the gray-violet suspension was uninterruptedly stirred at room temperature for 2d and then was filtered. The filtrate was evaporated slowly in air at room temperature. Compound 1 was deposited as lightyellow polyhedron crystals. Compound 1 can also be obtained by using the 15 same method just without [CrMo₆O₂₄H₆]³⁻ polyoxoanion. Yield: ca. 63% (based on Ag). Elemental analysis (%) calcd for C₆₃H₁₃₂O₂₃N₂S₁₀Ag₂₀: C, 20.10; H, 3.54; N, 0.74; S, 8.52; Ag, 57.32. Found: C, 20.04; H, 3.51; N,

0.75; S, 8.48; Ag, 57.24.

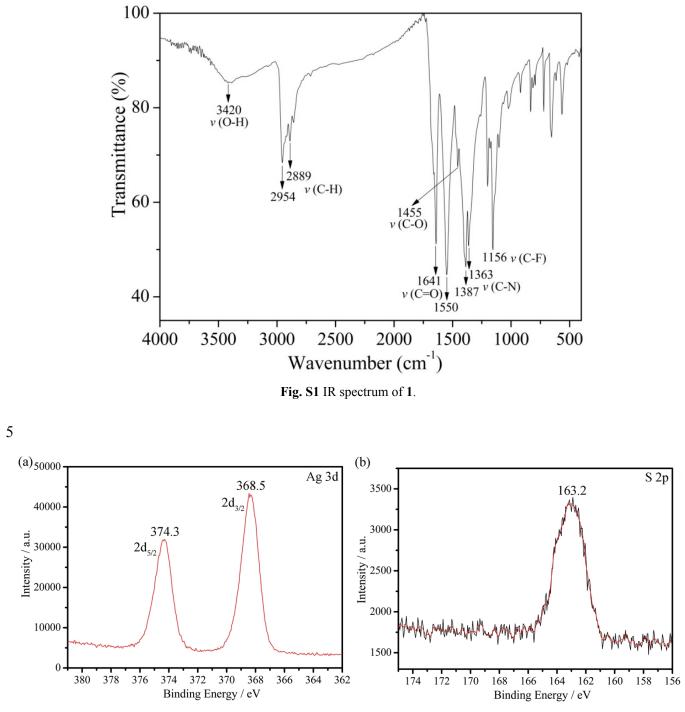
2. Crystallographic studies

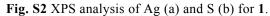
Single-crystal X-ray diffraction data for **1** was recorded on a Bruker Apex CCD II area-detector diffractometer 20 with graphite-monochromated Mo-Ka radiation ($\lambda = 0.71069$ Å) at 298(2) K. Absorption corrections were applied using multi-scan technique and performed by using the SADABS program. The structure of compound **1** was solved by direct methods and refined on F^2 by full-matrix least squares methods using the SHELXTL package.³

25 Crystal data for 1: $C_{63}H_{132}O_{23}N_2S_{10}Ag_{20}$; *P*-1; *a* = 12.947(5) Å, *b* = 15.169(5) Å, *c* = 15.922(5) Å; *a* = 67.605(5) °; $\beta = 82.355(5)$ °; $\gamma = 65.089(5)$ °; *V* = 2620.7(16) Å³; *Z* = 1; 15130 reflns measured, 9186 unique ($R_{int} = 0.0506$); final $R_I = 0.0614$, $wR_2 = 0.1519$ for 5443 observed reflections [$I > 2\sigma$ (I)]. CCDC-998570 (1) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/ data_request/cif for 1.

		Table S1. Selected bond le	ngths (Å) for compound 1		
	Ag(1)-O(10) ^{#1}	2.38(2)	Ag(1)-S(5)	2.619(4)	
	Ag(1)-O(7)	2.452(11)	Ag(1)- $Ag(6)$	2.9614(18)	
	Ag(1)-S(1)	2.489(4)	Ag(1)- $Ag(5)$	3.0343(19)	
35	Ag(1)-O(9)	2.52(2)	Ag(2)-S(1)	2.458(3)	

30 3. Selected bond lengths (Å) for compound 1


	Ag(2)-S(2)	2.472(3)		Ag(7)-O(3)	2.335(12)
	Ag(2)-O(11)	2.547(16)	30	Ag(7)-O(2)	2.442(11)
	Ag(2) - Ag(9)	2.9767(19)	50	Ag(7)-S(1)	2.584(3)
	Ag(2)-Ag(8)	3.0748(17)		Ag(7)-S(3)	2.594(4)
5	Ag(2)- $Ag(3)$	3.3213(17)		Ag(7)-Ag(8)	3.0041(18)
C	$Ag(3)-S(3)^{\#1}$	2.437(4)		Ag(8)-O(4)	2.285(11)
	Ag(3)-S(2)	2.439(4)	35	Ag(8)-S(1)	2.536(4)
	$Ag(3)-O(9)^{\#1}$	2.526(19)	50	Ag(8)-O(12)	2.543(10)
	$Ag(3)-Ag(6)^{\#1}$	3.1581(18)		Ag(8)-S(4)	2.613(3)
10	$Ag(3)-Ag(4)^{\#1}$	3.243(2)		Ag(8)-Ag(9)	3.2172(16)
10	Ag(4)-O(11)	2.26(2)		Ag(9)-O(5)	2.266(11)
	Ag(4)-S(3)	2.423(4)	40	Ag(9)-S(2)	2.565(4)
	Ag(4)-S(4)	2.434(4)		Ag(9)-S(4)	2.586(3)
	$Ag(4) - O(10)^{\#1}$	2.54(2)		Ag(9)-Ag(10)	2.9251(14)
15	Ag(4)-Ag(8)	2.9782(19)		$Ag(9) - Ag(5)^{\#1}$	3.0100(18)
	$Ag(4)-Ag(3)^{\#1}$	3.243(2)		Ag(10)-O(6)	2.297(9)
	Ag(4)-Ag(7)	3.2675(18)	45	$Ag(10)-O(6)^{#2}$	2.450(8)
	$Ag(5)-S(4)^{\#1}$	2.447(3)		$Ag(10)-S(5)^{\#1}$	2.596(4)
	Ag(5)-S(5)	2.464(3)		Ag(10)-S(2)	2.640(3)
20	$Ag(5)-O(11)^{\#1}$	2.476(17)		$Ag(10)-Ag(5)^{\#1}$	3.2776(19)
-•	Ag(5)-O(9)	2.56(2)		$O(6)-Ag(10)^{#2}$	2.450(8)
	$Ag(5)-Ag(9)^{\#1}$	3.0100(17)	50	O(9)-Ag(3) ^{#1}	2.526(19)
	$Ag(5)-Ag(10)^{\#1}$	3.2776(19)	••	O(10)-Ag(1) ^{#1}	2.38(2)
	Ag(6)-O(1)	2.253(10)		O(10)-Ag(4) ^{#1}	2.54(2)
25	Ag(6)-S(5)	2.473(4)		O(11)-Ag(5) ^{#1}	2.476(17)
	Ag(6)-S(3)	2.504(4)		$S(3)-Ag(3)^{\#1}$	2.437(4)
	Ag(6)-Ag(7)	3.0108(19)	55	$S(4)-Ag(5)^{\#1}$	2.447(3)
	$Ag(6) - Ag(3)^{\#1}$	3.1581(18)	00	$S(5)-Ag(10)^{\#1}$	2.596(4)
C.					
Symme	etry transformations used to	generate equivalent atoms	s. #1 -x,-y+1,-Z+2	, <i>#∠</i> - ∧ ⁺ 1,- y ,- Z ⁺ ∠.	


4. Physical Measurements

Elemental analyses (C, H, N and S) were performed on an Elementar Vario EL III elemental analyzer. Ag was 60 analyzed on a PLASMA-SPEC(I) ICP atomic emission spectrometer. The FT-IR spectrum was recorded from KBr pellets in the range of 4000–400 cm⁻¹ on a Mattson Alpha-Centauri spectrometer. XPS analysis was performed on a thermo ECSALAB 250 spectrometer with an Al Ka (1486.6 eV) achromatic X-ray source running at 15 kV. The XPS binding energy (BE) was internally referenced to the aliphatic C(1s) peak (BE, 284.6 eV). PXRD patterns were recorded on a Siemens D 5005 diffractometer with Cu-Ka (λ= 1.5418 Å)
65 radiation in the range of 3-50 °C. TGA was performed on a Perkin-Elmer TGA analyzer heated from room temperature to 1000 °C under nitrogen gas with a heating rate of 10 °C/min. NMR data were recorded on a Bruker AV spectrometer (500 MHz). Mass spectra were carried out on a Bruker Daltonics flex Analysis instrument. TEM was performed on a JEOL-2100F transmission electron microscope under 200 kV accelerating

70 100% reflectance on a Varian Cary 500 UV-Vis spectrophotometer. Luminescence was measured on an F-4500 FL Spectrophotometer. A CHI 440 Electrochemical Quartz Crystal Microbalance was used for the electrochemical experiments. A conventional three-electrode cell was used at room temperature. The compounds bulk-modified carbon-paste electrodes (CPEs) were used as the working electrode. An SCE and a platinum wire were used as reference and auxiliary electrodes, respectively.

voltage. Diffuse reflectivity was measured from 200 to 800 nm using barium sulfate (BaSO₄) as a standard with

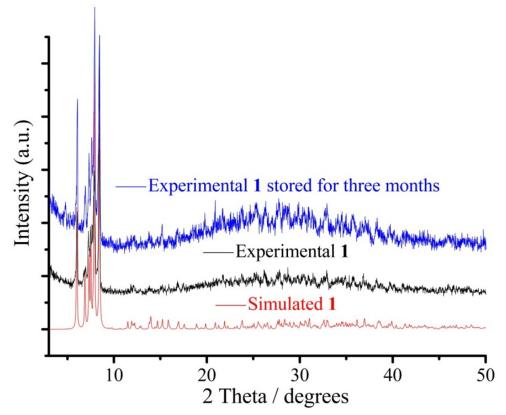
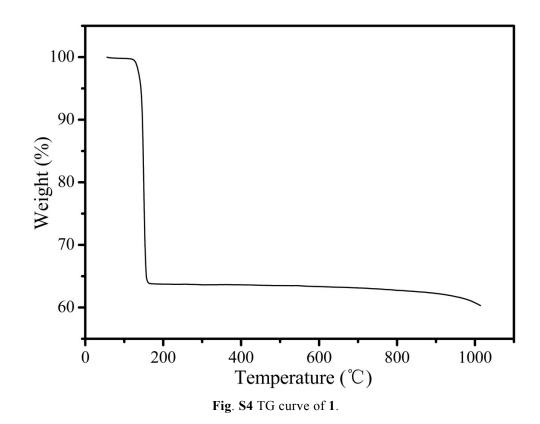
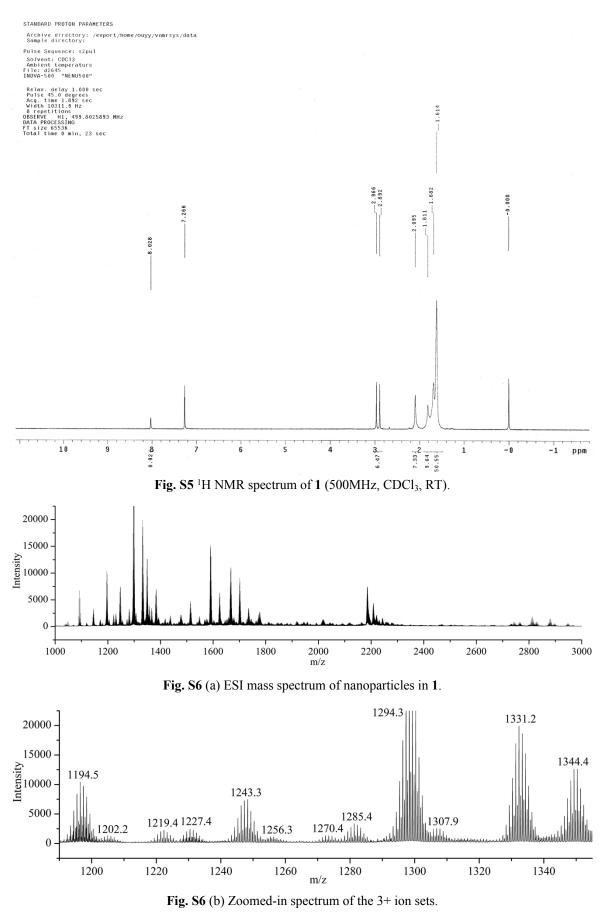




Fig. S3 Experimental and simulated X-ray powder diffraction patterns of 1.

5

S5

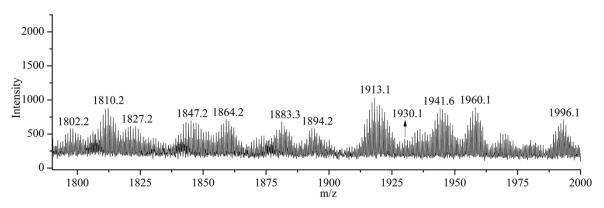


Fig. S6 (c) Zoomed-in spectrum of the 2+ ion sets.

Table S2. Detailed	d assignment of mass	spectral data for nar	noparticles in com	pound 1
I dole of Detailed	a abbiginnent of mabb	Spectral data for har	iopulticities in com	oound I

m/z observed	ion set	mass calculated	m/z calculated
1194.5	$[(CO_3^{2-})@Ag_{20}(S'Bu)_{10}(CH_3COO)_8H_3]^{3+}$	3584.5	1194.8
1202.4	$[(CO_3^{2-})@Ag_{20}(S'Bu)_{10}(CH_3COO)_8H_2Na_1]^{3+}$	3606.5	1202.2
1219.4	$[(CO_3^2)@Ag_{20}(S'Bu)_{10}(CH_3COO)_8(DMF)H_3]^{3+}$	3657.6	1219.2
1227.4	$[(CO_3^{2-})@Ag_{20}(S'Bu)_{10}(CH_3COO)_8(DMF)H_2Na_1]^{3+}$	3679.6	1226.5
1243.3	$[(CO_3^{2-})@Ag_{20}(S'Bu)_{10}(CH_3COO)_8(DMF)_2H_3]^{3+}$	3730.7	1243.6
1256.3	$[(CO_3^{2-})@Ag_{20}(S'Bu)_{10}(CH_3COO)_8(DMF)_2H_2K_1]^{3+}$	3768.8	1256.3
1270.4	$[(CO_3^{2-})(a)Ag_{20}(S'Bu)_{10}(CH_3COO)_8(DMF)_2Na_2K_1]^{3+}$	3812.8	1270.9
1285.4	$[(CO_3^2)@Ag_{20}(S'Bu)_{10}(CH_3COO)_8(DMF)_2H_2Cs_1]^{3+}$	3862.6	1287.5
1294.3	$[(CO_3^{2-})@Ag_{20}(S'Bu)_{10}(CH_3COO)_8(DMF)_2H_1Na_1Cs_1]^{3+}$	3884.6	1294.9
1307.9	$[(CO_3^{2-})@Ag_{20}(S'Bu)_{10}(CH_3COO)_8(DMF)_2Na_1K_1Cs_1]^{3+}$	3922.7	1307.6
1331.2	$[(CO_3^{2-})@Ag_{20}(S'Bu)_{10}(CH_3COO)_8(DMF)_2H_1Cs_2]^{3+}$	3994.5	1331.5
1344.4	$[(CO_3^{2-})@Ag_{20}(S'Bu)_{10}(CH_3COO)_8(DMF)_2K_1Cs_2]^{3+}$	4032.6	1344.2
1802.2	$[(CO_3^{2-})@Ag_{20}(S'Bu)_{10}(CH_3COO)_8H_1Na_1]^{2+}$	3605.5	1802.8
1810.2	$[(CO_3^{2-})@Ag_{20}(S'Bu)_{10}(CH_3COO)_8H_1K_1]^{2+}$	3621.6	1810.8
1827.2	$[(CO_3^{2-})@Ag_{20}(S'Bu)_{10}(CH_3COO)_8(DMF)H_2]^{2+}$	3656.6	1828.3
1847.2	$[(CO_3^{2-})@Ag_{20}(S'Bu)_{10}(CH_3COO)_8(DMF)H_1K_1]^{2+}$	3694.7	1847.4
1864.2	$[(CO_3^{2-})@Ag_{20}(S'Bu)_{10}(CH_3COO)_8(DMF)_2H_2]^{2+}$	3729.7	1864.9
1883.3	$[(CO_3^{2-})@Ag_{20}(S'Bu)_{10}(CH_3COO)_8(DMF)_2H_1K_1]^{2+}$	3767.8	1883.9
1894.2	$[(CO_3^{2-})(a)Ag_{20}(S'Bu)_{10}(CH_3COO)_8(DMF)_2Na_1K_1]^{2+}$	3789.8	1894.9
1913.1	$[(CO_3^{2-})@Ag_{20}(S'Bu)_{10}(CH_3COO)_8(DMF)K_1Cs_1]^{2+}$	3826.6	1913.3
1930.1	$[(CO_3^2)@Ag_{20}(S'Bu)_{10}(CH_3COO)_8(DMF)_2H_1Cs_1]^{2+}$	3861.6	1930.8
1941.6	[(CO ₃ ²⁻)@Ag ₂₀ (S'Bu) ₁₀ (CH ₃ COO) ₈ (DMF) ₂ Na ₁ Cs ₁] ²⁺	3883.6	1941.8
1960.1	[(CO ₃ ²⁻)@Ag ₂₀ (S ^t Bu) ₁₀ (CH ₃ COO) ₈ (DMF)Cs ₂] ²⁺	3920.4	1960.2
1996.1	[(CO ₃ ²⁻)@Ag ₂₀ (S'Bu) ₁₀ (CH ₃ COO) ₈ (DMF) ₂ Cs ₂] ²⁺	3993.5	1996.8

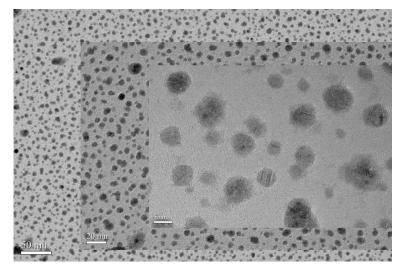


Fig. S7 TEM images of 1.

Preparation of compound 1 and AgS'Bu bulk-modified CPEs: The compound 1 bulk-modified CPE (1–CPE) was fabricated by mixing 0.10 g graphite powder and 0.010 g compound 1 in an agate mortar for approximately 30 min to achieve an uniform mixture; then a drop of paraffin oil was added and stirred with a glass rod.⁴ The homogenized mixture was packed into a 3 mm inner diameter glass tube and the tube surface was wiped with 5 weighing paper. The electrical contact was established with the copper wire through the back of the electrode. In a similar manner, AgS'Bu bulk-modified CPE was prepared by similar process without compound 1.

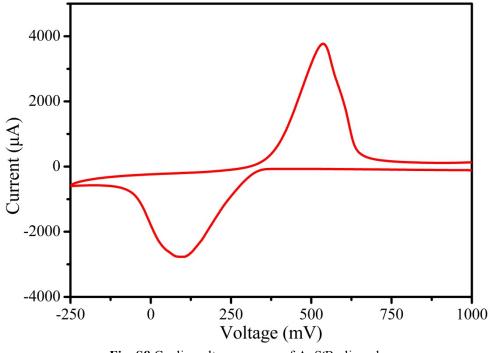


Fig. S8 Cyclic voltammogram of AgS^tBu ligand.

10

15

Reference:

1 G. Li, Z. Lei and Q.-M. Wang, J. Am. Chem. Soc., 2010, 132, 17678.

20 2 K. Nomiya, T. Takahashi, T. Shirai and M. Miwa, *Polyhedron*, 1987, 6, 213.

3 (a) G. M. Sheldrick, SHELX-97, Program for Crystal Structure Refinement, University of Göttingen, Germany, 1997; (b) G. M. Sheldrick, SHELXL-97, Program for Crystal Structure Solution, University of Göttingen, Germany, 1997.
4 X.-L. Wang, Z.-H. Kang, E.-B. Wang and C.-W. Hu, Mater. Lett., 2002, 56, 393.