Supplementary Information

A Zn azelate MOF: combining antibacterial effect

Cristina Tamames-Tabar,^{a,b} Edurne Imbuluzqueta,^a Nathalie Guillou,^b Christian Serre,^b Stuart R. Miller,^{b†} Erik Elkaïm,^c Patricia Horcajada^{*b†} and María J. Blanco-Prieto^{*a†}

^{*a*} Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.

^b Institut Lavoisier, UMR CNRS 8180, Université de Versailles Saint-Quentin-en-Yvelines, 45 Avenue des Etats-Unis, 78035 Versailles Cedex, France.

^c Cristal beamline, Soleil Synchrotron, L'Orme des Merisiers Saint Aubin BP4891192 Gif-sur-Yvette Cedex, France.

1. Crystallographic data

Fig. S1 Final Rietveld plot of BioMIL-5 showing observed (black circles), calculated (red line), and difference (black line) curves. A zoom at high angles is shown as inset. Blue marked lines and stars correspond to ZnO impurity. (λ =0.72528 Å)

Empirical formula	$C_9 H_{14}O_4 Zn$
$M_{ m r}$	251.595
Crystal system	Orthorhombic
Space group	Pcca
<i>a</i> (Å)	47.288(1)
<i>b</i> (Å)	4.7297(2)
<i>c</i> (Å)	9.3515(3)
$V(\text{\AA}^3)$	2091.5(1)
Ζ	8
λ (Å)	0.72518
Number of reflections	555
No. of fitted structural parameters	47
Number of soft restraints	31
$R_{\rm p}, R_{\rm wp}$	0.076, 0.104
$R_{ m Bragg}, GoF$	0.029, 2.94

Tab. S1 Crystallographic data and Rietveld refinement parameter for BioMIL-5 or $Zn[C_9O_4H_{14}]$.

2. Thermogravimetric Analysis (TGA)

Fig. S2 Thermogravimetric analysis of BioMIL-5.

3. Thermal stability

Fig. S3 X ray thermodiffraction patterns (λ Cu = 1.5405 Å) under air atmosphere of the BioMIL-5. Each red pattern corresponds to a multiple of 50°C. X-ray powder thermodiffractometry (XRTD) was performed using a Bruker D8 Advance diffractometer ($\theta - \theta$ mode, Cu radiation) equipped with a LYNXEYE XE detector. Data were collected in the 2 θ range 5-25° with a 0.02° step width, in the temperature range of 20-400°C at 10°C intervals.

4. Stability in solution

Fig. S4 XRPD patterns of azelaic acid (AzA; red), BioMIL-5 (green) and degradation samples after 1, 7, 30 and 70 days in water (W; blue) and in Mueller Hinton Cation Adjusted Broth medium or MHCA (M; black). X-ray powder diffraction (XRPD) patterns obtained during sample degradation were measured using a high-throughput Bruker D8 Advance diffractometer working on transmission mode and equipped with a focusing Göbel mirror producing CuK α radiation (λ =1.5418 Å) and a LYNXEYE detector. Data were collected at room temperature (RT), in the 2 θ range 3–30°, with a 0.02° step width.

Fig. S5 FTIR spectra of azelaic acid (AzA; red), BioMIL-5 (green), degradation samples after 1, 7, 30 and 70 days in water (W; blue) and in MHCA (M; black).

FTIR spectrum showed the absence of the v(C=O) band at 1700 cm⁻¹ confirmed the absence of free-remaining azelaic ligand. For the degradation samples, the presence of phosphates v(P-O) was observed at 1000 cm⁻¹.