Supporting Information for

Sandwich-like octacyanometalate-based cadmium assemblies with the 4,4'-dipyridyl sulfide ligand

Dan Yang,^a Hu Zhou,^{bc} Ai-Hua Yuan*^a and Yi-Zhi Li^d

^aSchool of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China. E-mail: <u>aihua.yuan@just.edu.cn</u> ^bSchool of Material Science and Engineering, Jiangsu University of Science and Technology,

Zhenjiang 212003, P. R. China

^cSiYang Diesel Engine Manufacturing Co., Ltd, Zhenjiang 212003, P. R. China ^dSchool of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China

General considerations. Unless otherwise mentioned, all reactants were used as purchased without further purification. All chemicals and solvents were purchase from commercial sources and used as received. $CdSO_4 \cdot 8/3H_2O$ and 4,4'-dipyridyl sulfide (dps) ligand were purchased from commercial sources and used without further purification. The $[HN(n-C_4H_9)_3]_3W(CN)_8$ precursor was prepared according to the published procedure.¹ IR spectra were measured on a Nicolet FT 1703X spectrophotometer in the form of KBr pellets in the 4000-400 cm⁻¹ region. Powder XRD patterns of compound **1-3** was collected with Cu-*K* α radiation using a Shimadzu XRD-6000 diffractometer.

X-ray crystallography. Diffraction data for compounds **1-3** and **1'** were collected on a Bruker Smart APEX II diffractometer equipped with Mo- $K\alpha$ ($\lambda = 0.71073$ Å) radiation. Diffraction data analysis and reduction were performed within *SMART*, *SAINT*, and *XPREP*.² Correction for Lorentz, polarization, and absorption effects were performed within *SADABS*.³ Structures were solved using Patterson method within *SHELXS-97* and refined using *SHELXL-97*.⁴⁻⁶ All non-hydrogen atoms were refined with anisotropic thermal parameters. The H atoms of dps, acetonitrile, and ethanol were calculated at idealized positions and included in the refinement in a riding mode with U_{iso} for H assigned as 1.2 or 1.5 times U_{eq} of the attached atoms. The H atoms bound to water molecules were located from difference Fourier maps and refined as riding with $U_{iso}(H) = 1.5U_{eq}(O)$. There is a disordered C13 atom in compound **2**, for which an anisotropic refinement was not permissible, and this atom was refined as isotropically.

Figure S1 Powder XRD patterns of as-synthesized and simulated from single-crystal data of compounds (*a*) **1**, (*b*) **2**, and (*c*) **3**.

Figure S2 IR spectra of compounds (*a*) 1, (*b*) 2, and (c) 3.

Figure S3 ORTEP diagram of compound **2** with thermal ellipsoids at the 30% probability level. All hydrogen atoms and crystallized water molecules were omitted for clarity. Symmetry codes: (i) x, -y - 1, z - 1/2; (ii) x, -y, z + 1/2; (iii) -x, -y, -z; (iv) -x, y, -z - 1/2; (v) x, -y, z - 1/2; (vi) x, -y - 1, z + 1/2. The Cd2 and S3 atoms lie on an inversion centre and a twofold axis, respectively.

Figure S4 ORTEP diagram of compound **3** with thermal ellipsoids at the 30% probability level. All hydrogen atoms, crystallized ethanol molecules were omitted for clarity. Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) -x + 1, y, -z + 1/2; (iii) x, -y + 1, z + 1/2; (iv) x, -y, z - 1/2; (v) x, -y, z + 1/2; (vi) x, -y + 1, z - 1/2. The Cd1 and S1 atoms lie on an inversion centre and a twofold axis, respectively.

References

- 1. L. D. C. Bok, J. G. Leipoldt and S. S. Basson, Z. Anorg. Allg. Chem., 1975, 415, 81-83.
- Bruker; SMART, SAINT and XPREP: Area Detector Control and Data Integration and Reduction Software, Bruker Analytical X-ray Instruments Inc., Madison, Wisconsin, USA, 1995.

- G. M. Sheldrick, SADABS: Empirical Absorption and Correction Software, University of Göttingen, Göttingen, Germany, 1996.
- 4. G. M. Sheldrick, *SHELXS-97. Program for X-ray Crystal Structure Determination*; Göttingen University: Göttingen, Germany, 1997.
- 5. G. M. Sheldrick, *SHELXL-97. Program for X-ray Crystal Structure Determination*; Göttingen University: Göttingen, Germany, 1997.
- 6. G. M. Sheldrick, A short history of SHELX. Acta Crystallogr. Sect., 2008, A64, 112-122.