Supporting Information

Inducing Nucleation and Growth of Chalcogenide Nanostructures on

			Element	t Weight%		Atomic%
			ОК	2.17	7	11.88
			Si K	3.28	3	11.44
			SК	17.2	5	42.36
			Bi M	77.3	0	28.32
		ģ	Totals	100.0	00	
¢¢			9 e			
0	1	2	3	4 5		5 7

Silicon Wafers

Yingchang Jiang, Shudong Zhang, Jian Zhang, Zhongping Zhang, and Zhenyang Wang

Figure S1 EDS analysis of the synthetic Bi_2S_3 , which shows that the molar ratio between Bi and S atom is about 1: 1.496, closing to the stoichiometric ratio of Bi_2S_3 .

Figure S2 XPS spectra of the clean silicon substrates (a) and the silicon substrates modified by 3-MPTES (b).

As shown in Figure S2a, all peaks can be assigned to C, O, and Si elements. The binding energy of the C_{1s} transition was used as a reference to standardize the binding energy of other elements. The oxygen peak may be attributed to the O_2 or CO_2 adsorbed onto the samples from the atmosphere, or the Si-(OH)₃ groups on the surface after hydrophilic treatment. Two strong peaks at 99 and 150 eV in the XPS spectra are assigned to Si_{2p}^3 and Si_{2s} , respectively. The peak at 228 eV corresponding to the S_{2s} transition only appeared in Figure S2b, suggesting the coverage of the thiol groups on the silicon substrate with surface modifications by 3-MPTES.

Figure S3 SEM images of (a, b) the directly growth Bi_2S_3 on the unfunctionalized substrate by 3-MPTES. After the reaction, the silicon surface is almost bare. Only a few of grains exist in the surfaces of the silicon substrates.

Figure S4 At the initial stage (4 h at 50 °C), the products are sphere structure with any lacuna on the surface of Bi_2S_3 spheres, as indicated by arrows in SEM image.

Figure S5 The XRD patterns of the as-prepared PbS, Ag₂S, CdS, and Fe₇S₈ micro-/nanostructures, respectively.