Supporting Informations

Solvent-mediated crystal-to-crystal transformations from a cationic homometallic metal-organic framework to heterometallic frameworks

Xinxiong Li, Yaqiong Gong, Huaixia Zhao, Ruihu Wang*

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China

Content

 Table S1 Selected Bond Lengths (Å) and Bond Angles (°) for Complex 1.

 Table S2 Selected Bond Lengths (Å) and Bond Angles (°) for Complex 2.

Figure S1 Simulate and experimental PXRD patterns of 1.

Figure S2 Simulate and experimental PXRD patterns of 2.

Figure S3 Oscilloscope traces of SHG signals of 1.

Ag(1)-N(12)	2.187(3)	Cr(1)-O(6)	1.609(2)
Ag(1)-N(2)#1	2.214(3)	Cr(1)-O(7)	1.622(3)
Ag(1)-N(8)#2	2.445(3)	Cr(1)-O(2)	1.792(3)
Ag(1)-Ag(2)#3	3.1396(7)	Cr(2)-O(3)	1.600(3)
Ag(2)-N(7)#2	2.207(3)	Cr(2)-O(4)	1.616(2)
Ag(2)-N(5)	2.235(3)	Cr(2)-O(1)	1.619(3)
Ag(2)-N(11)	2.418(3)	Cr(2)-O(2)	1.785(3)
Ag(2)-O(1)	2.555(3)	Cr(1)-O(5)	1.609(3)
N(12)-Ag(1)-N(2)#1	158.28(10)	N(11)-Ag(2)-Ag(1)#4	108.91(7)
N(12)-Ag(1)-N(8)#2	105.58(10)	O(1)-Ag(2)-Ag(1)#4	130.75(7)
N(2)#1-Ag(1)-N(8)#2	96.10(10)	O(5)-Cr(1)-O(6)	109.08(14)
N(12)-Ag(1)-Ag(2)#3	83.47(8)	O(5)-Cr(1)-O(7)	109.04(14)
N(2)#1-Ag(1)-Ag(2)#3	81.75(8)	O(6)-Cr(1)-O(7)	110.53(14)
N(8)#2-Ag(1)-Ag(2)#3	136.00(7)	O(5)-Cr(1)-O(2)	107.70(13)
N(7)#2-Ag(2)-N(5)	157.79(10)	O(6)-Cr(1)-O(2)	108.64(13)
N(7)#2-Ag(2)-N(11)	108.43(9)	O(7)-Cr(1)-O(2)	111.77(15)
N(5)-Ag(2)-N(11)	93.14(10)	O(3)-Cr(2)-O(4)	109.09(16)
N(7)#2-Ag(2)-O(1)	92.81(10)	O(3)-Cr(2)-O(1)	110.03(17)
N(5)-Ag(2)-O(1)	82.92(10)	O(4)-Cr(2)-O(1)	109.47(15)
N(11)-Ag(2)-O(1)	113.77(9)	O(3)-Cr(2)-O(2)	107.86(15)
N(7)#2-Ag(2)-Ag(1)#4	96.13(7)	O(4)-Cr(2)-O(2)	110.18(13)
N(5)-Ag(2)-Ag(1)#4	71.16(7)	O(1)-Cr(2)-O(2)	110.18(16)

 Table S1 Selected Bond Lengths (Å) and Bond Angles (°) for Complex 1.

Symmetry transformations used to generate equivalent atoms: #1 x-1/4, -y+1/4, z-5/4; #2 - x+3/4, y+1/4, z-1/4; #3 x-1/4, -y+1/4, z-1/4; #4 x+1/4, -y+1/4, z+1/4.

Ag(1)-N(13)	2.255(3)	Cr(1)-O(4)	1.618(4)
Ag(1)-N(7)	2.258(3)	Cr(1)-O(12)	1.620(4)
Ag(1)-N(2)#1	2.469(4)	Cr(1)-O(5)	1.790(4)
Ag(1)-O(8)	2.599(4)	Cr(2)-O(13)	1.597(4)
Ag(2)-N(17)#2	2.196(3)	Cr(2)-O(11)	1.608(3)
Ag(2)-N(17)#3	2.196(3)	Cr(2)-O(3)	1.614(4)
Ag(2)-O(12)#4	2.590(4)	Cr(2)-O(5)	1.783(4)
Ag(2)-O(12)	2.590(4)	Cr(3)-O(9)	1.612(4)
Ag(3)-N(6)	2.178(3)	Cr(3)-O(8)	1.618(4)
Ag(3)-N(10)	2.190(3)	Cr(3)-O(6)	1.621(4)
Ag(3)-Ag(5)	3.3558(6)	Cr(3)-O(14)	1.825(3)
Ag(4)-N(12)	2.248(3)	Cr(4)-O(1)	1.582(5)
Ag(4)-N(8)	2.256(3)	Cr(4)-O(2)	1.583(5)
Ag(4)-N(18)#5	2.534(4)	Cr(4)-O(10)	1.618(3)
Ag(4)-O(10)	2.566(3)	Cr(4)-O(14)	1.799(3)
Ag(5)-N(15)#6	2.189(4)	Cr(1)-O(7)	1.600(4)
Ag(5)-O(14)	2.271(3)	Ag(5)-O(3)	2.481(4)
Ag(5)-O(6)#3	2.474(4)		
N(13)-Ag(1)-N(7)	162.26(14)	O(14)-Ag(5)-Ag(3)	78.75(9)
N(13)-Ag(1)-N(2)#1	93.27(13)	O(6)#3-Ag(5)-Ag(3)	143.56(9)
N(7)-Ag(1)-N(2)#1	92.26(13)	O(3)-Ag(5)-Ag(3)	132.74(10)
N(13)-Ag(1)-O(8)	111.17(14)	O(7)-Cr(1)-O(4)	110.7(2)
N(7)-Ag(1)-O(8)	86.17(14)	O(7)-Cr(1)-O(12)	109.5(2)
N(2)#1-Ag(1)-O(8)	84.00(13)	O(4)-Cr(1)-O(12)	110.8(2)
N(17)#2-Ag(2)-N(17)#3	179.998(2)	O(7)-Cr(1)-O(5)	108.1(2)
N(17)#2-Ag(2)-O(12)#4	86.84(14)	O(4)-Cr(1)-O(5)	107.9(2)
N(17)#3-Ag(2)-O(12)#4	93.16(14)	O(12)-Cr(1)-O(5)	109.8(2)
N(17)#2-Ag(2)-O(12)	93.16(14)	O(13)-Cr(2)-O(11)	109.8(2)
N(17)#3-Ag(2)-O(12)	86.84(14)	O(13)-Cr(2)-O(3)	111.1(2)
O(12)#4-Ag(2)-O(12)	180.00(19)	O(11)-Cr(2)-O(3)	110.3(2)

Table S2 Selected Bond Lengths (Å) and Bond Angles (°) for Complex 2.

N(6)-Ag(3)-N(10)	172.29(14)	O(13)-Cr(2)-O(5)	107.7(2)
N(6)-Ag(3)-Ag(5)	112.89(10)	O(11)-Cr(2)-O(5)	109.24(19)
N(10)-Ag(3)-Ag(5)	74.18(10)	O(3)-Cr(2)-O(5)	108.7(2)
N(12)-Ag(4)-N(8)	162.68(13)	O(9)-Cr(3)-O(8)	109.6(2)
N(12)-Ag(4)-N(18)#5	94.99(13)	O(9)-Cr(3)-O(6)	111.7(2)
N(8)-Ag(4)-N(18)#5	94.07(13)	O(8)-Cr(3)-O(6)	112.0(2)
N(12)-Ag(4)-O(10)	83.58(12)	O(9)-Cr(3)-O(14)	107.13(18)
N(8)-Ag(4)-O(10)	90.35(13)	O(8)-Cr(3)-O(14)	108.42(18)
N(18)#5-Ag(4)-O(10)	168.56(12)	O(6)-Cr(3)-O(14)	107.78(18)
N(15)#6-Ag(5)-O(14)	148.55(14)	O(1)-Cr(4)-O(2)	109.5(4)
N(15)#6-Ag(5)-O(6)#3	112.89(14)	O(1)-Cr(4)-O(10)	112.4(3)
O(14)-Ag(5)-O(6)#3	88.07(13)	O(2)-Cr(4)-O(10)	111.0(3)
N(15)#6-Ag(5)-O(3)	110.41(15)	O(1)-Cr(4)-O(14)	106.7(2)
O(14)-Ag(5)-O(3)	95.08(13)	O(2)-Cr(4)-O(14)	108.7(3)
O(6)#3-Ag(5)-O(3)	81.77(14)	O(10)-Cr(4)-O(14)	108.39(17)

Symmetry transformations used to generate equivalent atoms: #1 *x*, *y*-1, *z*; #2 *x*-1, *y*, *z*-1; #3 -x+4, -*y*+3, -*z*+3; #4 -*x*+3, -*y*+3, -*z*+2; #5 *x*, *y*, *z*-1; #6 *x*, *y*+1, *z*+1.

Figure S1 Simulate and experimental PXRD patterns of 1.

Figure S2 Simulate and experimental PXRD patterns of 2.

Figure S3 Oscilloscope traces of SHG signals of 1.