Supporting Information

Synthesis, characterization, and luminescence modulation of a bariumtetracarboxylate framework with I²O¹ connectivity

Xiao Chen^a Sha He^a Feiyan Chen^a Yunlong Feng^{*a}

Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, PR China

1. General remark

All reagents and solvents were used as received from commercial suppliers without further purification. The elemental analyses of C and H were performed on a Perkin-Elmer 2400 II elemental analyzer. NMR spectra were recorded on a Bruker AV400 MHz spectrometer. IR spectrum was measured in KBr pellets on a Nicolet 5DX FT-IR spectrometer. The thermogravimetric measurement was performed on preweighed samples in an oxygen stream using a Netzsch STA449C apparatus with a heating rate of 10 °C/min. Powder X-ray diffraction data were obtained using a Philips PW3040/60 automated powder diffractometer, using Cu-K α radiation ($\lambda = 1.542$ Å) with a 2 θ range of 5–30°. The varied temperature PXRD patterns were recorded using Bruke D8 ADVANCE. The excitation and luminescence spectra were performed on a HITACHIF-2500 fluorescence spectrometer in solid state at room temperature. The diffraction data was collected on a Bruker APEX II diffractometer equipped with a graphite-monochromatized Mo-K α radiation ($\lambda = 0.71073$ Å) at 296(2) K. Data intensity was corrected by Lorentz-polarization factors and empirical absorption. The structures were solved by direct methods and expanded with difference Fourier techniques. All calculations were performed using SHELXS-97 and SHELXL-97 program packages.

2. Synthesis and characterization of the organic building block (H₄L)

The ligand biphenyl-3,3',5,5'-tetra-(phenyl-4-carboxylic acid) was synthesized using a Suzuki coupling reaction. biphenyl-3,3',5,5'-tetrabromide (1.00g, 2.13mmol), 4-(methoxycarbonyl)phenylboronic acid (2.32g, 29.01mmol) and Na₂CO₃(3.61g, 34.05mmol) were mixed in 75 mL of 2:2:1 PhCH₃/ MeOH/H₂O, and the mixture was de-aerated under Ar for 20 min.

[Pd(PPh₃)₄] (0.5g, 0. 22mmol) was added to the reaction mixture with stirring and the mixture heated to 90 °C for three days under N₂. The product Me₄L was isolated by conventional extraction procedures. The final product H₄L was obtained by hydrolysis of the crude product Me₄L with 6M aqueous NaOH, followed by acidification with concentrated HCl. Yield: 0.85g, 85%. Elemental analyses (percentage calculated/found) for H₄L (C 75.7/75.3, H 4.13/4.17). Mass (ESI) m/z (M–H⁺): 633.16. ¹H NMR (DMSO-*d*₆, 300 MHz): δ = 13.03 (s, 4H), 8.25 (d, 4H, *J* = 0.8 Hz), 8.09 (m, 18H); ¹³C NMR (DMSO-*d*₆, 100 MHz): 167.65, 144.50, 142.07, 141.14, 130.42, 130.34, 127.98, 126.41, 125.69; Selected infrared (KBr, cm⁻¹): 3671, 2974, 2467, 1943, 1657, 1592, 1544, 1394, 1198, 1055, 1019, 858, 787, 733, 692, 668, 554.

Scheme S1 The synthetic route to the organic linker H_4L .

3. Synthesis and characterization of the compound

The organic linker H₄L (10.0 mg, 15.7 μ mol) and Ba(NO₃)₂ (30.0 mg, 44.5 μ mol) were dissolved in 4 mL of 1:1 DMF/H₂O in a disposable scintillation vial (20 mL). The vial was capped tightly and placed at an oven at 140 °C for 48 h. The colourless block-shaped crystals were collected by filtration and washed with DMF in 26.1% yield. The compound can be characterized by the single-crystal X-ray structure determination, TGA, PXRD and microanalysis. Elemental analysis (percentage calculated/found): for [Ba₅(L)₃(H₂O)₆]·25H₂O·10DMF·2Me₂NH₂⁺ (C 46.7/47.1, H 5.40/5.44, N 4.24/4.30). Selected infrared (KBr, cm⁻¹): 3392, 2971, 1751, 1652, 1646, 1586, 1540, 1395, 1184, 1091, 1045, 854, 788, 723, 670, 459.

Fig. S1 TGA curves of the compound.

Fig. S2 PXRD patterns of the compound, along with the simulated XRD patterns (black) from their single-crystal

X-ray structures and experimental patterns (red).

Fig. S3 PXRD patterns of the simulated from single X-ray crystal structure (black) and thermally activated the

MOF at different temperatures.

Fig. S4 Photoluminescent spectra of H₄L and the compound in solid state at room temperature.

Fig. S5 The N₂ adsorption-desorption isotherms at 77 K. The sample was guest exchanged with dry acetone and evacuated under high vacuum at 60 °C to obtain the activated sample.

Fig. S6 FTIR spectra of the compound (red), H₄L (black).

Empirical formula	$C_{154}H_{214}Ba_5N_{12}O_{65}$	
Formula weight	3960.07	
Temperature (K)	296(2) K	
Wavelength (Å)	0.71073 Å	
Crystal system, Space group	Hexagonal, P 6/m	
Unit cell dimensions	a = 15.0263(3) Å	
	<i>b</i> = 15.0263(3) Å	
	c = 17.6363(6) Å	
	$\alpha = 90.00$ °	
	$\beta = 90.00$ °	
	γ= 120.00 °	
Volume (Å ³)	3448.59(15)	
Z, Calculated density (g cm ⁻³)	1, 1.907	
Absorption coefficient (mm ⁻¹)	1.522	
F (000)	2022	
Crystal color	colourless	

Table S1 Crystal data and structure refinement for the compound

θ range for data collection (°)	1.94 to 27.48
Limiting indices	$-19 \le h \le 16, -19 \le k \le 19, -22 \le 1 \le 22$
Reflections collected / unique / observed	25665 /2685 ($R_{int} = 0.0779$) / 1973
reflections	$[I > 2\sigma(I)]$
Completeness to theta = 27.48	98.0 %
Absorption correction	Empirical
Refinement method	Full-matrix least-squares on F ²
parameters	124
Goodness-of-fit (on F^2)	1.000
Final <i>R</i> indices $[I \ge 2\sigma(I)]$	R = 0.0504, wR = 0.1651
R indices (all data)	R = 0.0772, wR = 0.1785
Largest diff. peak / hole (e Å-3)	1.405 / -1.243
CCDC	1001306

Table S2 Selected bond lengths and bond angles for the compound

Bond	Dist(Å)	Bond	Dist(Å)
Ba(1)-O(2)#1	2.812(5)	Ba(1)-C(13)	3.214(6)
Ba(1)-O(2)#2	2.812(5)	Ba(2)-O(1)#4	2.771(4)
Ba(1)-O(2)#3	2.812(5)	Ba(2)-O(1)#5	2.771(4)
Ba(1)-O(2)	2.812(5)	Ba(2)-O(1)#2	2.771(4)
Ba(1)-O(1W)	2.840(8)	Ba(2)-O(1)	2.771(4)
Ba(1)-O(1W)#3	2.840(8)	Ba(2)-O(1)#6	2.771(4)
Ba(1)-O(1)#3	2.896(4)	Ba(2)-O(1)#7	2.771(4)
Ba(1)-O(1)	2.896(4)	Ba(2)-O(1W)	2.945(8)
Ba(1)-O(1)#1	2.896(4)	Ba(2)-O(1W)#4	2.945(8)
Ba(1)-O(1)#2	2.896(4)	Ba(2)-O(1W)#7	2.945(8)
Angle	(°)	Angle	(°)
O(2)#1-Ba(1)-O(2)#2	180.0(3)	O(1W)#3-Ba(1)-O(1)#2	112.45(17)
O(2)#1-Ba(1)-O(2)#3	102.6(3)	O(1)#3-Ba(1)-O(1)#2	111.79(18)
O(2)#2-Ba(1)-O(2)#3	77.4(3)	O(1)-Ba(1)-O(1)#2	68.21(18)
O(2)#1-Ba(1)-O(2)	77.4(3)	O(1)#1-Ba(1)-O(1)#2	180.00(19)
O(2)#2-Ba(1)-O(2)	102.6(3)	O(1)#4-Ba(2)-O(1)#5	71.75(19)
O(2)#3-Ba(1)-O(2)	180.0(2)	O(1)#4-Ba(2)-O(1)#2	132.20(6)
O(2)#1-Ba(1)-O(1W)	70.47(14)	O(1)#5-Ba(2)-O(1)#2	89.13(14)
O(2)#2-Ba(1)-O(1W)	109.53(14)	O(1)#4-Ba(2)-O(1)	89.13(14)
O(2)#3-Ba(1)-O(1W)	70.47(14)	O(1)#5-Ba(2)-O(1)	132.20(6)
O(2)-Ba(1)-O(1W)	109.53(14)	O(1)#2-Ba(2)-O(1)	71.75(19)
O(2)#1-Ba(1)-O(1W)#3	109.53(14)	O(1)#4-Ba(2)-O(1)#6	89.13(14)

O(2)#2-Ba(1)-O(1W)#3	70.47(14)	O(1)#5-Ba(2)-O(1)#6	132.20(6)
O(2)#3-Ba(1)-O(1W)#3	109.53(14)	O(1)#2-Ba(2)-O(1)#6	132.20(6)
O(2)-Ba(1)-O(1W)#3	70.47(14)	O(1)-Ba(2)-O(1)#6	89.13(14)
O(1W)-Ba(1)-O(1W)#3	180.0(5)	O(1)#4-Ba(2)-O(1)#7	132.20(6)
O(2)#1-Ba(1)-O(1)#3	100.21(17)	O(1)#5-Ba(2)-O(1)#7	89.13(14)
O(2)#2-Ba(1)-O(1)#3	79.79(17)	O(1)#2-Ba(2)-O(1)#7	89.13(14)
O(2)#3-Ba(1)-O(1)#3	45.73(14)	O(1)-Ba(2)-O(1)#7	132.20(6)
O(2)-Ba(1)-O(1)#3	134.27(14)	O(1)#6-Ba(2)-O(1)#7	71.75(19)
O(1W)-Ba(1)-O(1)#3	112.45(17)	O(1)#4-Ba(2)-O(1W)	64.45(17)
O(1W)#3-Ba(1)-O(1)#3	67.55(17)	O(1)#5-Ba(2)-O(1W)	64.45(17)
O(2)#1-Ba(1)-O(1)	79.79(17)	O(1)#2-Ba(2)-O(1W)	67.76(16)
O(2)#2-Ba(1)-O(1)	100.21(17)	O(1)-Ba(2)-O(1W)	67.76(16)
O(2)#3-Ba(1)-O(1)	134.27(14)	O(1)#6-Ba(2)-O(1W)	144.07(9)
O(2)-Ba(1)-O(1)	45.73(14)	O(1)#7-Ba(2)-O(1W)	144.07(9)
O(1W)-Ba(1)-O(1)	67.55(17)	O(1)#4-Ba(2)-O(1W)#4	67.76(16)
O(1W)#3-Ba(1)-O(1)	112.45(17)	O(1)#5-Ba(2)-O(1W)#4	67.76(16)
O(1)#3-Ba(1)-O(1)	180.0(2)	O(1)#2-Ba(2)-O(1W)#4	144.07(9)
O(2)#1-Ba(1)-O(1)#1	45.73(14)	O(1)-Ba(2)-O(1W)#4	144.07(9)
O(2)#2-Ba(1)-O(1)#1	134.27(14)	O(1)#6-Ba(2)-O(1W)#4	64.45(17)
O(2)#3-Ba(1)-O(1)#1	100.21(17)	O(1)#7-Ba(2)-O(1W)#4	64.45(17)
O(2)-Ba(1)-O(1)#1	79.79(17)	O(1W)-Ba(2)-O(1W)#4	120
O(1W)-Ba(1)-O(1)#1	112.45(17)	O(1)#4-Ba(2)-O(1W)#7	144.07(9)
O(1W)#3-Ba(1)-O(1)#1	67.55(17)	O(1)#5-Ba(2)-O(1W)#7	144.07(9)
O(1)#3-Ba(1)-O(1)#1	68.21(18)	O(1)#2-Ba(2)-O(1W)#7	64.45(17)
O(1)-Ba(1)-O(1)#1	111.79(18)	O(1)-Ba(2)-O(1W)#7	64.45(17)
O(2)#1-Ba(1)-O(1)#2	134.27(14)	O(1)#6-Ba(2)-O(1W)#7	67.76(16)
O(2)#2-Ba(1)-O(1)#2	45.73(14)	O(1)#7-Ba(2)-O(1W)#7	67.76(16)
O(2)#3-Ba(1)-O(1)#2	79.79(17)	O(1W)-Ba(2)-O(1W)#7	120
O(2)-Ba(1)-O(1)#2	100.21(17)	O(1W)#4-Ba(2)-O(1W)#7	120
 O(1W)-Ba(1)-O(1)#2	67.55(17)		

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y,-z #2 -x+1,-y,-z+1 #3 x,y,z-1 #4 x-y,x-1,-z #5 -x+y+1,-x+1,z #6 -y+1,x-y,z-1 #7 -x+y+1,-x+1,z-1 #9 x,y,-z+1

#10 -x+1,-y+1,-z+1 #11 1-x,-y,1-z, #12 x-y,-1+x,-z #13 1-y,x-y,-1+z #14 1-x+y,1-x,-1+z