Supporting information for

Polymorphic and solvate structures of ethyl ester and carboxylic acid derivatives of WIN 61893 analogue and their stability in solution

Kirsi Salorinne,^{a*} Tanja Lahtinen^a, Varpu Marjomäki^b and Hannu Häkkinen^{ac}

Departments of Chemistry^a, Biology and Environmental Sciences^b, and Physics[‡], Nanoscience Center, University of Jyväskylä, P.O. Box 35, 40014 JYU, Finland

Synthesis of the WIN 61893 derivatives

Synthesis of the WIN 61893 derivatives **1** and **2** was accomplished by following a previously reported protocol (Scheme S1).¹ Shortly, nucleophilic substitution reaction of 3,5-dimethyl-4-hydroxybenzonitrile with 5-chloro-1-pentyne first produces the intermediate nitrile **4** in the presence of K_2CO_3/KI in DMF at 75°C with good yields. The subsequent treatment of nitrile **4** with hydroxylamine first gives amidoxime, which then upon acylation reaction with acetyl chloride affords the oxadiazole **5**. Noteworthy is the [3+2] cycloaddition reaction to produce the isoxazole **1**, which is accomplished by the reaction of the oxadiazole **5** with nitrile oxide obtained in situ from a reaction of chlorooximidoacetate² and triethylamine. Basic hydrolysis of the ester functionalized isoxazole **1** then finally affords the terminal carboxylic acid containing isoxazole **2**.

Scheme S1. Synthesis scheme for the preparation of pleconaril derivatives **1** and **2**: a) K_2CO_3/KI , DMF, 75°C, b) NH₂OH-HCl, K_2CO_3 , EtOH, reflux, c) acetyl chloride, pyridine, reflux, d) chlorooximidoacetate, Et₃N, DMF, 90°C, e) aq NaOH, ethanol-H₂O 1:1, reflux, f) NaNO₂, conc HCl, H₂O, -5°C.

¹ Y. Chen, W. Zhang, X. Chen, J. Wang and P. G. Wang, J. Chem. Soc., Perkin Trans. 1, 2001, 1716

² A. P. Kozikowski and M. Adamczyk, J. Org. Chem., 1983, 48, 366

Figure S1. ^1H and ^{13}C NMR spectra of intermediate 4 in CDCl3 at 30°C.

Figure S2. ¹H NMR spectrum of intermediate **5** in $CDCl_3$ at 30°C. Chemical shifts marked with (*) belong to residual ethyl acetate.

Figure S3. ¹H and ¹³C NMR spectra of ethyl ester derivative **1** in CDCl₃ at 30° C.

Figure S4. ¹H and ¹³C NMR spectra of carboxylic acid derivative **2** in CDCl₃ at 30° C.

Crystallographic data and details

.

	1-101111	1-1011111	2-2101	2-DIVISO					
Compound									
Crystallization	CH ₂ Cl ₂ -Hexane (se) ^a	MeOH (sce)	EtOH (se)						
Crystal morphology	plate	block	plate (sheets)	long needles					
Composition	$C_{20}H_{23}N_3O_5$	$C_{20}H_{23}N_3O_5$	2 ($C_{18}H_{19}N_3O_5 \cdot C_2H_5OH$)	$C_{18}H_{19}N_3O_5 \cdot C_2H_6SO$					
Formula weight (g mol ⁻¹)	385.41	385.41	806.86	435.49					
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic					
Space group	P2 ₁ /n	P21/c	P2 ₁ /c	P2 ₁ /c					
a (Å)	7.8644(2)	18.6194(5)	8.3029(3)	13.7775(3)					
b (Å)	23.7196(5)	8.3392(2)	45.516(2)	7.2131(1)					
<i>c</i> (Å)	10.4242(2)	12.7669(3)	11.0152(4)	21.4071(3)					
β(°)	96.213(3)	100.331(3)	103.692(4)	90.490(2)					
V (Å ³)	1933.11(7)	1950.19(8)	4044.5(3)	2127.32(6)					
Ζ	4	4	4	4					
d_{calc} (g cm ⁻³)	1.324	1.313	1.325	1.360					
μ[Mo Kα] (mm ⁻¹)	0.096	0.096	0.099	0.194					
F(000)	816	816	1712	920					
Crystal size (mm ³)	$0.11 \times 0.12 \times 0.17$	$0.13 \times 0.19 \times 0.24$	$0.05 \times 0.12 \times 0.25$	$0.08 \times 0.12 \times 0.22$					
hetarange (°)	2.14 to 30.69	2.22 to 30.60	1.79 to 28.78	1.90 to 30.61					
Reflections collected	11637	10497	18378	11563					
Independent reflections	5318 (R _{int} =0.0202)	5164 (R _{int} =0.0420)	9215 (R _{int} =0.0267)	5806 (R _{int} =0.0182)					
Restraints/parameters	0, 257	0, 257	0, 535	0, 277					
GOF on <i>F</i> ²	1.053	1.025	1.063	1.048					
Final R indices[$l>2\sigma(l)$],	0.0530, 0.1184	0.0596, 0.1498	0.0593, 0.1245	0.0446, 0.1137					
R1, wR2									
R indices (all data), R1,	0.0825, 0.1328	0.0840, 0.1674	0.0931, 0.1408	0.0607, 0.1245					
wR2									
Largest difference peak	0.202, -0.221	0.290, -0.275	0.295, -0.249	0.313, -0.350					
and hole (e Å ⁻³)									
CCDC number	999254	999255	999256	999257					
space group a (Å) b (Å) c (Å) β (°) V (Å ³) Z d_{calc} (g cm ⁻³) μ [Mo Kα] (mm ⁻¹) F(000) Crystal size (mm ³) θ range (°) Reflections collected Independent reflections Restraints/parameters GOF on F^2 Final R indices[$l>2\sigma(l)$], R1, wR2 R indices (all data), R1, wR2 Largest difference peak and hole (e Å ⁻³) CCDC number	P_{2_1} /II 7.8644(2) 23.7196(5) 10.4242(2) 96.213(3) 1933.11(7) 4 1.324 0.096 816 0.11 × 0.12 × 0.17 2.14 to 30.69 11637 5318 (R _{int} =0.0202) 0, 257 1.053 0.0530, 0.1184 0.0825, 0.1328 0.202, -0.221 999254	P_{21}/C 18.6194(5) 8.3392(2) 12.7669(3) 100.331(3) 1950.19(8) 4 1.313 0.096 816 0.13 × 0.19 × 0.24 2.22 to 30.60 10497 5164 (R _{int} =0.0420) 0, 257 1.025 0.0596, 0.1498 0.0840, 0.1674 0.290, -0.275 999255	$P_{2_1/C}$ 8.3029(3) 45.516(2) 11.0152(4) 103.692(4) 4044.5(3) 4 1.325 0.099 1712 0.05 × 0.12 × 0.25 1.79 to 28.78 18378 9215 (R _{int} =0.0267) 0, 535 1.063 0.0593, 0.1245 0.0931, 0.1408 0.295, -0.249 999256	P21/C 13.7775(3) 7.2131(1) 21.4071(3) 90.490(2) 2127.32(6) 4 1.360 0.194 920 0.08 × 0.12 × 0.22 1.90 to 30.61 11563 5806 (R _{int} =0.0182) 0, 277 1.048 0.0446, 0.1137 0.0607, 0.1245 0.313, -0.350 999257					

Table S1. Crystallographic details for derivatives 1 and 2 structures.

vd = vapor diffusion, sce = slow cooling and evaporation, se = slow evaporation; ^a same unit cell was obtained from hot MeOH or EtOH (vd H_2O) solutions as well.

Figure S5. Time dependent ¹H NMR spectra of ethyl ester (**1**) derivative in DMSO-d₆ at 30°C measured over several days: a) freshly prepared sample, b) after 8 days and c) after 15 days showing no isoxazole ring opening.

Scheme S2. Numbering scheme used for the NMR chemical shift assignment of derivatives 1 - 3 (adopted from the crystallographic numbering scheme).

	¹ H chemical shift (ppm)			¹³ C chemical shift (ppm)		
atom #	1	2	3	1	2 ^b	3
1	1.31	_	_	13.9	_	-
2	4.36	_	_	61.7	_	-
4	_	_	-	175.2	175.5	-
6	-	-	-	157.9	158.3	115.5 (CN)
9	-	-	-	159.5	161.7	199.5 (C=O) keto
10	6.78	6.70	4.09	101.8	102.1	37.9 (CH ₂ -) keto
11	3.09	3.08	2.76	22.8	23.8	23.7
12	2.17	2.17	1.97	27.6	28.4	31.9
13	3.85	3.85	3.78	70.4	70.5	70.7
15	_	_	_	156.1	155.9	158.0
16	_	_	_	131.5	131.7	131.5
17	7.67	7.67	7.67	127.5	128.3	127.4
18	_	_	_	121.6	122.4	121.5
19	2.28	2.28	2.28	15.9	16.5	15.9
23	_	_	_	167.3	168.2	167.3
26	_	_	_	177.1	176.6	177.1
28	2.64	2.64	2.64	11.9	12.5	11.9

Table S2. ¹H and ¹³C NMR chemical shift assignment of the WIN 61893 derivatives 1 - 2 and the ring opening product **3** in DMSO-d₆ at 30°C.^a

^a Most significant changes in the chemical shifts have been highlighted with blue color. ^b Measured in CDCl₃.

Figure S6. ¹³C NMR spectrum of the ring-opening product β -keto nitrile derivative **3** in DMSO-d₆ at 30°C. Carbons C-6, C-9 and C-10 have been highlighted in the spectrum (see numbering in Scheme S2).