Supporting Information for:

Crystal structure analyses facilitate understanding of synthetic protocols in the preparation of 6,6'dibromo substituted BINOL compounds

Marco Agnes,^{a,b} Alessandro Sorrenti,^a Dario Pasini,^b Klaus Wurst,^c and David B. Amabilino^a

^a Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus Universitari de Bellaterra, 08193 Cerdanyola del Vallès, Catalonia - Spain, Fax: (+34) 93-5805729

^b Department of Chemistry and INSTM Research Unit, University of Pavia, Viale Taramelli, 10 - 27100 -

Pavia - Italy.

^c Institut für Anorganische Chemie, Innrain 80/82, A-6020 Innsbruck, Austria

Figure S1. ¹H-NMR spectra of (*RS*)-2 before (a) and after crystallization from toluene/cyclohexane (b).

Figure S2. IR spectra of (R)-2 before (top) and after crystallization from toluene/n-hexane (bottom).

Figure S3 Optical microscope images of compound (R)-2 crystallized from CH₂Cl₂/cyclohexane and purified.

Figure S4 Optical microscope images of compound (R)-2 crystallized from toluene/n-hexane and purified.

Figure S5 Optical microscope images of compound (*RS*)-2 crystallized from toluene/cyclohexane and purified.

Figure S6 Optical microscope images of compound (*RS*)-**3** crystallized from CHCl₃/EtOH and still with regioisomerically impurirties.

Figure S7: Optical microscope images of compound (*R*)-**3** crystallized from CHCl₃/EtOH and purified.

Figure S8 Optical microscope images of compound (*RS*)-4 crystallized from CH₂Cl₂/EtOH and regioisomerically impure.

Figure S9 Solution state circular dichroism spectra of the *R* enantiomers of compounds (in EtOH), 3 and 4 (both in MeCN).

Copies of NMR spectra of compound (RS)-4

¹H NMR

¹³C NMR

8

Hydrogen bonds for (R)-2 and (RS)-2

Table S1.	Hydrogen	bonds for (<i>R</i>)-2 [Å	and °] in	$P2_{1}2_{1}2_{1}$.

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(1)-H(1O)O(2)#1	0.831(19)	2.13(2)	2.934(4)	164(5)
O(2)-H(2O)Br(1)#2	0.823(19)	2.74(4)	3.353(3)	133(4)

Symmetry transformations used to generate equivalent atoms: #1 -x+2,y+1/2,-z+1/2 #2 x+1/2,-y+3/2,-z

Table S2.	Hydrogen	bonds for	(<i>RS</i>)-2	[Å and °	$ in P2_1/n.$
-----------	----------	-----------	-----------------	----------	----------------

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(1)-H(1O)O(2)#1	0.820(19)	2.14(3)	2.840(3)	143(4)

Symmetry transformations used to generate equivalent atoms: #1 -x-1/2,y+1/2,-z+1/2