Supporting Information

Vertically Standing MoS₂/MoO_x Heterojunction Nanosheets for

Enhanced Visible-Light Photocatalytic Active and Photostability

Gang Zhou,^a Xiaoyong Xu, ^{*ab} Jianyu Yu,^a Bin Feng,^a Yu Zhang,^a Jingguo Hu^{*a} and

Yuxue Zhou^a

^aCollege of Physics Science and Technology, Yangzhou University, Yangzhou 225002, China

^bState Key Laboratory of Bioelectronics and School of Electronic Science and Engineering,

Southeast University, Nanjing 210096, China

*Corresponding Authors:

E-mail: xxy@yzu.edu.cn (X. Xu) and jghu@yzu.edu.cn (J. Hu).

Fig. S1 Schematic illustration for the two-step CVD process: (a) the synthesis of MoO_3 nanosheets and (b) the assembly of MoS_2 coverage by sulfurizing MoO_3 templates.

The vertically oriented MoO₃ nanosheets were synthesized by chemical vapor deposition (CVD), then the core–shell heterostructured nanosheets were obtained by sulfidizing MoO₃ templates. For the high temperature CVD method, the metallic source was evaporated at the high temperature region and then drifted to deposit onto a substrate at the lower temperature region under flowing argon/oxygen gas. Herein, the growth mechanism of the vertical MoO₃ nanosheets may be based on the vapor–solid (VS) mechanism.¹ In the VS mechanism, the size of MoO₃ nanosheets is proportional to time and growth rate which depend on evaporation rate and system pressure. Theoretically, the formation of wire/belt-like nanostructures can be explained by the kinetics of crystal growth via the 2D nucleation probability,² which is expressed as $P_N = Bexp\left(-\frac{\pi\sigma^2}{k^2T^2\ln(\alpha)}\right)$, where P_N is a nucleation probability, B is a

constant, σ is the surface energy of the solid whisker, k is the Boltzmann constant, T is the absolute temperature, and α is the supersaturation ratio defined as $\alpha = p/p_0$,

where p and p_0 is respectively vapor pressure and equilibrium vapor pressure corresponding to temperature T. A higher temperature and larger supersaturation ratio induce the sheet-like structure. By comparison, lower temperature and smaller supersaturation ratio facilitate the growth of a wire/rod-like structure. The evaporation rate and the system pressure could have effect on the growth via the vapor pressure in terms of the supersaturation ratio as seen in the 2D nucleation probability equation.

Fig. S2 Digital photographs of (a) MoO_3 and (b) MSO1 before and after the sulfidization. (c) Schematic illustration for the construction of MSO heterojunction.

Fig. S3 EDS spectra acquired from the whole area of (a) MoO₃ and (b) MSO1 before and after the sulfidization.

Fig. S4 The line-sweeping EDS spectra acquired from (a) the edge and (b) the surface areas of MSO1 after the sulfidization.

PH=7 Time (min)	MoO ₃	MSO ₁	MSO ₂	MSO ₃	TiOz	Blank
0	0.356	0.356	0.356	0.356	0.356	0.356
30	0.289	0.091	0.108	0.117	0.301	0.352
60	0.231	0.035	0.049	0.061	0.264	0.350
90	0.203	0.021	0.035	0.041	0.227	0.349
120	0.184	0.011	0.021	0.028	0.211	0.349

Table S1 The absorbance intensities of RhB aqueous solution at its typicalwavelength of 553 nm with the illumination time for different photocatalysts.

PH Time (min)	2	5	7	9	12
0	0.317	0.334	0.356	0.378	0.393
30	0.310	0.294	0.289	0.347	0.379
60	0.274	0.251	0.231	0.321	0.367
90	0.249	0.227	0.203	0.314	0.351
120	0.247	0.224	0.184	0.308	0.349
b PH Time (min)	2	5	7	9	12
0	0.317	0.334	0.356	0.378	0.393
30	0.126	0.117	0.091	0.197	0.214
60	0.097	0.090	0.035	0.149	0.171
90	0.058	0.051	0.021	0.109	0.121
120	0.031	0.025	0.011	0.087	0.119

Table S2 The absorbance intensities of RhB aqueous solution at its typical wavelength of 553 nm with the illumination time at different PH values for (a) MoO_3 and (b) MSO1 before and after the sulfidization.

Repeat times Time (min)	0	1	2	3	4
120	0.011	0.018	0.020	0.033	0.038

Table S3 The absorbance intensities of RhB aqueous solution at its typicalwavelength of 553 nm after the illumination of 120 min in five sequential recycles forMSO1 after the sulfidization.

Reference

- 1 S. Phadungdhitidhada, P. Mangkorntong, S. Choopun, N. Mangkorntong and D. Wongratanaphisan, *Mater. Lett.* 2011, **65**, 568.
- 2 Z. R. Dai, Z. W. Pan and Z. L. Wang, Adv. Funct. Mater. 2003, 13, 9.