SUPPORTING INFORMATION FOR

A Microporous Cationic Metal-Organic Framework with Nanocages based on Metallamacrocycle Subunits: Structures and luminescence property

Zhen-Lan Fang, Xiao-Yuan Wu, Rong-Min Yu, and Can-Zhong Lu*

The State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China.

czlu@fjirsm.ac.cn

Table S1	Selected	Bond	Lengths	(Å) and	Angles ((0)	for 1

1							
Cu(1)-N(3)	1.971(6)	Cu(1)-N(22)	1.978(6)				
Cu(1)-N(14)	2.045(6)	Cu(1)-Cu(7)	2.962(2)				
Cu(2)-N(23)	1.941(6)	Cu(2)-N(18)	1.962(6)				
Cu(2)-N(8)	2.092(6)	Cu(2)-Cu(7)	2.990(2)				
Cu(3)-N(24)	1.860(6)	Cu(3)-N(24)#1	1.860(6)				
Cu(4)-N(19)	1.877(6)	Cu(4)-N(9)#2	1.882(6)				
Cu(5)-N(2)	1.868(6)	Cu(5)-N(13)#3	1.868(6)				
Cu(6)-N(17)	1.862(6)	Cu(6)-N(4)#4	1.864(6)				
Cu(7)-N(7)	1.846(6)	Cu(7)-N(12)	1.854(6)				
N(6)O(1)	3.258(1)	N(6)O(4b)	2.800(23)				
N(15)O(2)	2.945(1)	N(16)O(3)	3.042(1)				
N(3)-Cu(1)-N(22)	128.5(2)	N(3)-Cu(1)-N(14)	117.6(3)				
N(22)-Cu(1)-N(14)	113.8(3)	N(23)-Cu(2)-N(18)	135.5(3)				
N(23)-Cu(2)-N(8)	117.9(3)	N(18)-Cu(2)-N(8)	106.5(3)				
N(24)-Cu(3)-N(24)#1	180.0(2)	N(19)-Cu(4)-N(9)#2	172.5(3)				
N(2)-Cu(5)-N(13)#3	171.1(3)	N(17)-Cu(6)-N(4)#4	175.0(3)				
N(7)-Cu(7)-N(12)	166.9(3)	N(6)-HO(1)	156.2(0)				
N(6)-HO(4b)	166.4(0)	N(15)-HO(2)	165.9(0)				
N(16)-HO(3)	142.0(0)						
^{<i>a</i>} 1. (#1) -x, -y, -z+2; (#2) -x, -y, -z+1; (#3) -x, -y-1, -z+1; (#4) x+1, y, z; (#5) x-1, y, z.							

Fig. S1 The FT-IR spectrum of 1.

Fig. S2 XRPD pattern simulated from a single crystal of **1** (dark), and that of as-synthesized sample of **1** (red).

Fig. S3 The thermogravimetric analysis(TGA) of 1.

Fig. S4 The N₂ adsorption (black line) and desorption (red line) isotherms of dry sample 1.