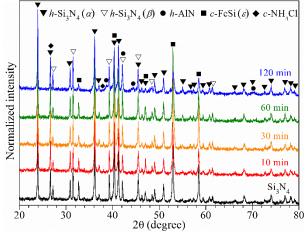
Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2014

CrystEngComm

RSCPublishing

PAPER

SUPPORTING INFORMATION


Synthesis of three-dimensional AlN-Si₃N₄ branched heterostructures and their photoluminescence properties

J. Cai,^a Y. L. Zhang,^a Y. Li,^a L.Y. Du,^a Z.Y. Lyu,^a Q. Wu,^a X. Z. Wang*^a and Z. Hu^a

Table of Contents

- SI-1 XRD patterns of all the products in the range of 20-80°.
- SI-2 Raman spectra of all the products.
- SI-3 HRTEM images of the 3D branched heterostructures.
- SI-4 The surface of Si_3N_4 nanostructures.
- SI-5 SEM images of the products from different deposition times for AIN.

The XRD patterns of all the products in the range of 20-80° are shown in Fig. S1, the diffraction peaks of as-synthesized Si₃N₄ product are indexed as h-Si₃N₄ (α , β) and c-FeSi (ε). After chemical vapor deposition of AlN, new weak diffraction peaks assigned to h-AlN appear. With elongating the deposition time, the intensity peaks of h-AlN become stronger, indicating the formation of more and more h-AlN phase.

Fig. S1 XRD patterns of all the products in the range of 20-80°. The peaks marked with a triangle (∇), hollow triangle (∇) solid circle (\odot), and solid square (\blacksquare), corresponding to *h*-Si₃N₄ (α , PDF#83-0700), *h*-Si₃N₄ (β , PDF#76-0453), *h*-AlN(PDF#75-1620), *c*-FeSi (ε , PDF#88-1298) and *c*-NH₄Cl (PDF#73-0365). Deposition times for AlN are 10, 30, 60, and 120 min.

SI-2 Raman spectra of all the products.

The Raman spectra of all the products are shown in Fig. S2. For as-synthesized Si_3N_4 product, the five intensive Raman peaks are observed at ca. 252 (A1), 356 (E), 511 (A1), 651 (A1) and 856 cm⁻¹ (E), which are assigned to α -Si₃N₄ (space group P31c)^{S1}. After depositing AlN, two new Raman peaks occur in ca. 608 and 651 cm⁻¹, which are indexed to the A1 (TO) and E2 phonon modes of AlN (space group P63mc)^{S2}. The results directly confirm the formation of AlN.

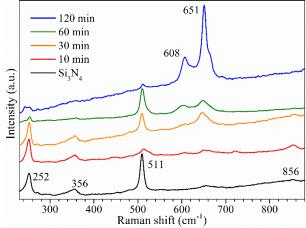


Fig. S2 Raman spectra of all the products. Deposition time for AlN are 10, 30, 60, and 120 min.

SI-3 HRTEM images of the 3D branched heterostructures.

The HRTEM images of the 3D branched heterostructures are shown in Fig. S3. As shown in Fig. S3a (Fig. 6b is the part of Fig. S3a), the interplanar spacing of 2.4 Å corresponds to d_{101} of *h*-AlN and the interplanar spacings of 2.3 and 2.1 Å with dihedral angle of 130 ° are assigned to $d_{\overline{211}}$ and d_{301} of *h*-Si₃N₄ (α). In Fig. S3b, the interplanar spacing of 2.7 Å is assigned to d_{100} of *h*-AlN while the interplanar spacings of 3.9 Å is assigned to d_{110} of *h*-Si₃N₄ (α). The HRTEM results further confirm the formation of AlN on the surface of 1D Si₃N₄ nanostructures.

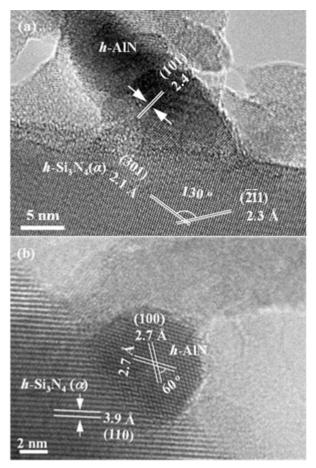


Fig. S3 HRTEM images of the 3D AlN-Si₃N₄ branched heterostructures.

SI-4 The surface of Si_3N_4 nanostructures.

As seen in Fig. S4, the surface of Si_3N_4 nanostructures is uneven, which indicates that there are a large amount of surface defects. These defects play an important role in the nucleation of AIN nanocones on the surface of 1D Si_3N_4 nanostructures.

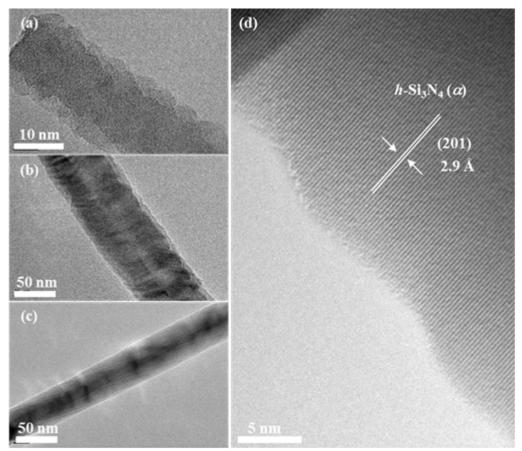
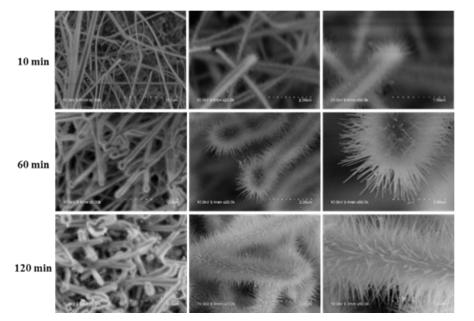



Fig. S4 Microstructures of the surface of Si_3N_4 nanostructures.

SI-5 SEM images of the products from different deposition times for AIN.

The SEM images with different deposition time of AlN were shown in Fig. S5. It can be clearly seen that, with elongating the deposition time, the AlN nanocones on the surface of 1D Si_3N_4 increased gradually in length and diameter.

Fig. S5 Effect of deposition time on the diameter and length of AlN nanocones on the surface of 1D Si_3N_4 nanostructures. The typical SEM magnifications are 5k, 20k and 50k. The longer the deposition time is, the thicker and longer AlN nanocones grow. Deposition times for AlN are 10, 60, and 120 min.

References

S1 J. A. Wendel and W. A. Goddard, J. Chem. Phys., 1992, 97, 5048-5062.

S2 C. Liu, Z. Hu, Q. Wu, X. Wang, Y. Chen, H. Sang, J. Zhu, S. Deng and N. Xu, J. Am. Chem. Soc., 2005, 127, 1318-1322.