Supporting Information

Supramolecular Assemblies of Ru(II) Organometallic

Half-Sandwich Complexes

Bao Cheng, Alireza Azhdari Tehrani, Mao-Lin Hu, Ali Morsali

Supporting Information

Experimental Section	page 2
ORTEP diagrams	page 5
Selected fragments for hydrogen bonding interaction energy analysis	page 9
CSD searching queries for analysing C-H···C _{CN} interaction	Page 12
Table S1. Selected bond distances and angles	page 13
Table S2. Hydrogen bond geometries for compounds 1-8	page 13
Table S3. Details of calculated hydrogen bonding interaction energies (BLYP-D3-ZO) different complexes	RA/TZP) of Page 16

Syntheses of complexes

[$(\eta^6$ -p-cymene)RuCl₂(4-aminobenzonitrile)].(1)

Complex 1 was obtained from $[Ru(\eta^{6}-p-cymene)Cl_{2}]_{2}$ (0.04g,0.065mmol) and 4-aminobenzonitrile (0.016g, 0.13mmol). Yield: 49mg, 0.12mmol (90%). (m.p=227-229°C). Anal. Calcd for $C_{17}H_{20}Cl_{2}N_{2}Ru$: C, 48.12; H, 4.75; N, 6.60. Found (%): C, 47.92; H, 4.84; N, 6.56. ¹H-NMR (500MHz, d_{6} -DMSO) δ 7.39 (2H, $d_{*}J$ = 8.5Hz, $C_{6}H_{4}$); 6.60 (2H, $d_{*}J$ =8.5Hz, $C_{6}H_{4}$); 6.15 (2H,S, NH_{2}); 5.81 (4H, $d_{*}J$ =20.0,6.0Hz, $C_{6}H_{4}$); 2.84 (1H,hept,CH); 2.09 (3H,S,Me); 1.19 (6H, $d_{*}J$ =6.5Hz, Me_{2}). ¹³C-NMR (126MHz, d_{6} -DMSO) δ 152.9 (Ar-C-NH₂); 133.4 (Ar- \underline{C} -i_{pr}); 120.7 (Ar- \underline{C} -CH₃); 113.4, 86.3 (Ar- \underline{C}); 106.3, 100.1 (Ar- \underline{C}); 95.5 (CN); 85.5(Ar- \underline{C} -CN); 29.9 (CH); 21.5 (Me₂); 17.8 (Me). IR (KBr, cm⁻¹): 3421.16 V_{N-H} ; 3134.37, 3043.44 V_{CH-Ph} ; 2957.00 $V_{CH_{3}}$; 2229.09 $V_{C=N}$; 1487.29, 1241.07 V_{C-N} ; 1101.87 $V_{C=C}$; 837.71 $V_{Ru=N}$. Crystals suitable for X-ray analysis were collected by slow evaporation of a saturated methanol/ dichloromethane (1:2) mixture of **1**.

$[(\eta^6-p-cymene)RuCl_2(4-aminobenzyl cyanide)].$ (2)

Complex **2** was obtained from $[Ru(\eta^6-p-cymene)Cl_2]_2$ (0.04g,0.065mmol) and 4-aminobenzyl cyanide (0.018g, 0.13mmol). Yield: 49.2mg, 0.11mmol (86%). (m.p=231-233°C). Anal. Calcd for $C_{18}H_{22}Cl_2N_2Ru$: C, 49.32; H, 5.06; N, 6.39. Found (%): C, 49.06; H, 5.17; N, 6.28. ¹H-NMR (500MHz, d_6 -DMSO) $\delta 6.98$ (2H,d,J=8.5Hz, C_6H_4); 6.56 (2H,d,J=8.5Hz, C_6H_4); 5.81 (4H,dd, J=20.5, 6.5Hz, C_6H_4); 5.25(2H,S, NH_2); 3.78 (2H,S, CH_2); 2.83 (1H,hept,CH); 2.09 (3H,S,Me); 1.19 (6H,d,J=7.0

Hz,*Me*₂). ¹³C-NMR(126MHz, *d*₆-DMSO) δ 147.9(Ar-C-NH₂); 128.7(Ar-<u>C</u>-i_{pr}); 119.9(Ar-<u>C</u>-CH₃); 117.5, 86.3 (Ar-<u>C</u>); 114.2, 100.1 (Ar-<u>C</u>); 105.3(CN); 85.5(Ar-<u>C</u>-CH₂CN); 77.1(<u>C</u>H₂CN); 29.9 (CH); 21.5 (Me₂); 17.8 (Me). IR (KBr, cm⁻¹): 3432.78 *V*_{*N*-*H*}; 3221.61, 3126.90 *V*_{*CH*-*Ph*}; 2964.10 *V*_{*CH*₃}; 2227.63 *V*_{*C*=*N*}; 1241.07 *V*_{*C*-*N*}; 1081.80 *V*_{*C*=*C*}; 877.43 *V*_{*Ru*=*N*}. Crystals suitable for X-ray analysis were collected by slow evaporation of a saturated methanol/ dichloromethane (1:1) mixture of **2**.

$[(\eta^6-p-cymene)RuCl_2(4-aminophenylacetic acid)].$ (3)

Complex **3** was obtained from $[\text{Ru}(\eta^6-p\text{-cymene})\text{Cl}_2]_2$ (0.02g,0.032mmol) and 4-aminophenylacetic acid (0.01g, 0.064mmol). Yield: 11.9mg, 0.03mmol (80%). (m.p= 207-209°C). Anal. Calcd for C₁₈H₂₃Cl₂NO₂Ru: C, 47.27; H, 5.07; N, 3.06. Found (%): C, 47.38; H, 5.01; N, 2.76. ¹H-NMR (500MHz,*d*₆-DMSO) ¹H NMR (500MHz,*d*₆-DMSO) δ 12.1 (1H,S,OH); 6.89 (2H,d,*J*=8.5

Hz,C₆H₄); 6.49 (2H,d,*J*=8.5Hz,C₆H₄); 5.81 (4H,dd,*J*=20.0,6.0Hz,C₆H₄); 4.96 (2H,S,NH₂); 3.17 (2H,d, *J*=5.0 Hz,CH₂); 2.85 (1H,hept,CH); 2.09 (3H,S,Me); 1.19 (6H,d,*J*=7.0Hz,Me₂). ¹³C-NMR (126MHz, *d*₆-DMSO) δ 173.4 (COOH); 147.2(Ar-C-NH₂); 129.7(Ar-<u>C</u>-i_{pr}); 121.7(Ar-<u>C</u>-CH₃); 113.7, 86.3 (Ar-<u>C</u>); 106.3, 100.1(Ar-<u>C</u>); 85.5(Ar-<u>C</u>-CH₂); 36.1(CH₂);29.9(CH); 21.5 (Me₂); 17.8 (Me). IR (KBr, cm⁻¹): 3430.66 V_{N-H} ; 3216.90, 3123.39 V_{CH-Ph} ; 2966.37 V_{CH_3} ; 1708.52 $V_{C=0}$; 1377.26 V_{0-H} ; 1231.24 V_{C-N} ; 1049.81 $V_{C=C}$; 879.89 $V_{Ru=N}$. Crystals suitable for X-ray analysis were collected by slow diffusion of diethyl ether into a MeOH: DCM (3 : 2) mixture of **3**.

$[(\eta^6-p-cymene)RuCl_2(methyl 4-aminobenzoate)].$ (4)

Complex **4** was obtained from $[Ru(\eta^6-p-cymene)Cl_2]_2$ (0.04g,0.065mmol) and methyl 4-aminobenzoate (0.02g, 0.13mmol). Yield: 23.8mg, 0.06mmol (81%). (m.p= 187-189°C). Anal. Calcd for $C_{18}H_{23}Cl_2NO_2Ru$: C, 47.27; H, 5.07; N, 3.06. Found (%): C, 47.24; H, 5.12; N, 3.09.

¹H-NMR (500MHz,*d*₆-DMSO) ¹H NMR (500MHz,*d*₆-DMSO) δ 7.63 (2H,d,*J*=8.5Hz,*C*₆*H*₄); 6.56 (2H,d,*J*=8.5 Hz,*C*₆*H*₄); 5.99 (2H,S,*NH*₂); 5.81 (4H,dd,*J*=20.5,6.5Hz,*C*₆*H*₄); 3.70 (3H,S,*OCH*₃); 2.84 (1H,hept,*CH*); 2.09(3H,S,*Me*); 1.19(6H,d,*J*=7.0Hz,*Me*₂). ¹³C-NMR(126MHz,*d*₆-DMSO) δ 166.3 (COOCH₃); 153.5(Ar-C-NH₂); 131.0(Ar-<u>C</u>-i_{pr}); 115.7(Ar-<u>C</u>-CH₃); 112.6, 86.3(Ar-<u>C</u>); 106.3,100.1(Ar-<u>C</u>); 85.5(Ar-<u>C</u>-COO); 51.1(OCH₃); 29.9 (CH); 21.5 (Me₂); 17.8 (Me). IR (KBr, cm⁻¹): 3419.12 V_{N-H} ; 3288.07, 3186.51 V_{CH-Ph} ; 2970.29 V_{CH_3} ; 1717.20 $V_{C=0}$; 1284.57 V_{C-O} ; 1109.04 V_{C-N} ; 1057.02 $V_{C=C}$; 882.71 $V_{Ru=N}$. Crystals suitable for X-ray analysis were collected by slow evaporation of a saturated methanol mixture of **4**.

$[(\eta^6-p-cymene)RuCl_2(ethyl 4-aminobenzoate)].$ (5)

Complex **5** was obtained from $[\text{Ru}(\eta^{6}-p\text{-cymene})\text{Cl}_{2}]_{2}(0.04g,0.065\text{mmol})$ and ethyl 4-aminobenzoate (0.022g, 0.13mmol). Yield: 46.8mg, 0.1mmol (76%). (m.p= 194-196°C). Anal. Calcd for C₁₉H₂₅Cl₂NO₂Ru: C, 48.45; H, 5.35; N, 2.97. Found (%): C, 48.28; H, 4.86; N, 2.66. ¹H-NMR (500MHz,*d*₆-DMSO) δ 7.63 (2H,d,*J*=8.5Hz,*C*₆*H*₄); 6.55 (2H,d,*J*=8.5Hz,*C*₆*H*₄); 5.98 (2H,S,*NH*₂); 5.81(4H,dd,*J*=20.0,6.0Hz,*C*₆*H*₄); 4.19 (2H,dd, *J*=7.5, 14.5Hz,*CH*₂); 2.84 (1H,hept,*CH*); 2.09 (3H,S,*Me*); 1.27(3H,t,*J*=7.5,Hz,*CH*₂*CH*₃); 1.19 (6H,d,*J*=7.0Hz,*Me*₂). ¹³C-NMR (126MHz,*d*₆-DMSO) δ 165.8(COOCH₂); 153.4(Ar-C-NH₂); 130.9(Ar-C-i_{pr}); 115.9(Ar-C-CH₃); 112.6, 86.3(Ar-C); 106.3,100.1(Ar-C); 85.5(Ar-C-COO); 59.4(OCH₂); 29.9 (CH); 21.5 (Me₂); 17.8 (Me);14.3 (OCH₂CH₃). IR (KBr, cm⁻¹): 3439.04 *V*_{*N*-*H*}; 3274.16, 3204.13 *V*_{*CH*-*P*_h; 3114.41 *V*_{*CH*₃}; 2967.19 *V*_{*CH*₂}; 1709.31 *V*_{*C*=0}; 1277.66 *V*_{*C*-*O*}; 1113.43 *V*_{*C*-*N*}; 1055.94 *V*_{*C*=*C*}; 861.91 *V*_{*Ru*=*N*}. Crystals suitable for X-ray analysis were collected by slow evaporation of a saturated methanol mixture of **5**.}

$[(\eta^6-p-cymene)RuCl_2(Butyl 4-aminobenzoate)].$ (6)

Complex **6** was obtained from $[Ru(\eta^6-p-cymene)Cl_2]_2$ (0.04g,0.065mmol) and ethyl 4-aminobenzoate (0.022g, 0.13mmol). Yield: 46.8mg, 0.1mmol (76%). (m.p= 186-188°C). Anal. Calcd for $C_{21}H_{29}Cl_2NO_2Ru$: C, 50.54; H, 5.86; N, 2.81. Found (%): C, 50.19; H, 5.76; N, 2.84. ¹H-NMR (500MHz,*d*₆-DMSO) ¹H NMR (500MHz,*d*₆-DMSO) δ 7.63 (2H,d,*J*=8.5Hz,*C*₆*H*₄); 6.56 (2H,d,

 $J=8.5 \text{ Hz}, C_6H_4); 5.90 (2\text{H}, \text{S}, \text{NH}_2); 5.81(4\text{H}, \text{dd}, J=20.5, 6.5\text{Hz}, C_6H_4); 4.20 (2\text{H}, t, J=6.5\text{Hz}, CH_2); 2.84 (1\text{H}, \text{hept}, CH); 2.09 (3\text{H}, \text{S}, Me); 1.64 (2\text{H}, \text{m}, J=15.0, 6.5, \text{Hz}, CH_2CH_2); 1.40 (2\text{H}, \text{m}, J=15.0, 7.5, \text{Hz}, CH_2CH_2CH_2); 1.19 (6\text{H}, \text{d}, J = 7.0\text{Hz}, Me_2); 0.93 (3\text{H}, t, J=7.5, \text{Hz}, CH_2CH_3). ^{13}\text{C-NMR} (126\text{MHz}, d_6-\text{DMSO}) \delta 165.8(\text{QOOCH}_2); 153.4(\text{Ar-C-NH}_2); 130.9(\text{Ar-Q-i}_{pr}); 116.0(\text{Ar-Q-CH}_3); 112.6, 86.3 (\text{Ar-Q}); 106.3, 100.1(\text{Ar-Q}); 85.5(\text{Ar-Q-COO}); 63.2 (OOCH_2); 30.4 (CH_2CH_2); 29.9 (CH); 21.5 (Me_2); 18.8(CH_2CH_3); 17.8 (Me); 13.6(CH_2CH_3). \text{ IR (KBr, cm}^{-1}): 3423.02 V_{N-H}; 3202.04 V_{CH-Ph}; 3101.70 V_{CH_3}; 2958.14 V_{CH_2}; 1717.17 V_{C=0}; 1275.52 V_{C-O}; 1107.68 V_{C-N}; 1022.52 V_{C=C}; 870.22 V_{Ru=N}. \text{ Crystals suitable for X-ray analysis were collected by slow evaporation of a saturated methanol mixture of$ **6**.

$[(\eta^6-C_6H_6)RuCl_2(ethyl 4-aminobenzoate)].$ (7)

Complex 7 was obtained from (η^6 -C₆H₆)RuCl₂ (0.25g,0.5mmol) and ethyl 4-aminobenzoate (0.18g, 1.0mmol). Yield: 283.3mg, 0.68mmol (68%). (m.p= 198-200°C). Anal. Calcd for C₁₅H₁₇Cl₂NO₂Ru: C, 43.42; H, 4.13; N, 3.38. Found (%): C, 43.28; H, 4.07; N, 3.19. ¹H-NMR (500MHz,*d*₆-DMSO) ¹H NMR (500MHz,*d*₆-DMSO) δ 7.63 (2H,d,*J*=8.5Hz,*C*₆H₄); 7.37 (1H,S,*NH*); 6.55 (2H,d,*J*=8.5Hz,*C*₆H₄); 5.98 (6H,m, *C*₆H₆); 4.19 (3H,m,*NH*,*OCH*₂); 1.27 (3H,t,*J*=7.5Hz,*CH*₃); ¹³C-NMR (126MHz,*d*₆-DMSO) δ 153.4(<u>C</u>OOCH₂); 130.9(Ar-C-NH₂) ; 128.3

,116.0, 112.6(Ar-<u>C</u>); 87.6(Ar-<u>C</u>-COO); 59.4(OOCH₂), ; 14.3(CH₃). IR (KBr, cm⁻¹): 3431.73 V_{N-H} ;3211.01,3134.25 V_{CH-Ph} ; 2979.86 V_{CH_3} ;2920.04 V_{CH_2} ; 1709.27 $V_{C=0}$; 1275.77 V_{C-O} ;1168.28 V_{C-N} ; 1073.11 $V_{C=C}$; 846.75 $V_{Ru=N}$. Crystals suitable for X-ray analysis were collected by slow diffusion of diethyl ether into a MeOH: DCM (1:3) mixture of 7.

$[(\eta^6 - C_6 H_6) RuCl_2(butyl 4-aminobenzoate)].$ (8)

Complex **8** was obtained from (η^6 - C_6H_6)RuCl₂ (0.25g,0.5mmol) and butyl 4-aminobenzoate (0.2g, 1.0mmol). Yield: 288.1mg, 0.65mmol (65%). (m.p= 194-196°C). Anal. Calcd for C₁₇H₂₁Cl₂NO₂Ru: C, 46.06; H, 4.77; N, 3.16. Found (%): C, 45.83; H, 4.61; N, 3.04.¹H-NMR (500MHz, d_6 -DMSO) ¹H NMR (500MHz, d_6 -DMSO) δ 7.63 (2H,d,J=8.5Hz, C_6H_4); 7.38 (1H,S,*NH*); 6.55 (2H,d,J=8.5Hz, C_6H_4); 5.98 (6H,m, C_6H_6); 4.16 (3H,m,*NH*,*OCH*₂); 1.64 (2H,m, J=7.0,14.5Hz,*OCH*₂*CH*₂); 1.40 (2H,m, J= 7.5,14.5Hz,*OCH*₂*CH*₂*CH*₂); 0.93 (3H,t, J=7.5Hz,*CH*₃); ¹³C-NMR (126MHz, d_6 -DMSO) δ 153.4(COOCH₂); 130.9(Ar-C-NH₂); 128.5,116.0,112.6(Ar-<u>C</u>); 87.6(Ar-<u>C</u>-COO); 63.2(OOCH₂); 30.4(CH₂CH₂₂CH₃); 18.7(CH₂CH₃); 13.6(CH₃). IR (KBr, cm⁻¹): 3429.92 V_{N-H} ; 3122.61 V_{CH-Ph} ; 3062.01 V_{CH_3} ; 2956.19 V_{CH_2} ; 1710.79 $V_{C=0}$; 1276.23 V_{C-O} ;1111.16 V_{C-N} ; 1073.11 $V_{C=C}$; 842.06 $V_{Ru=N}$. Crystals suitable for X-ray analysis were collected by slow diffusion of diethyl ether into a MeOH: DCM (1:3) mixture of **8**.

Complexes **1-8** are soluble in methanol, dimethylformamide, dimethysulfoxide; sparingly soluble in water, acetone, dichloromethane, chloroform, acetonitrile, benzene; while insoluble in petroleum ether and diethyl ether.

Ortep views

Figure S1 ORTEP view of compound 1

Figure S2 ORTEP view of compound 2

Figure S3 ORTEP view of compound 3

Figure S4 ORTEP view of compound 4

Figure S5 ORTEP view of compound 5

Figure S6 ORTEP view of compound 6

Figure S7 ORTEP view of compound 7

Figure S8 ORTEP view of compound 8

(a)

(b)

(c)

(d)

Figure S9. Fragments selected for hydrogen bonding interaction energy analysis in compounds [(Cymene)Ru(4-aminobenzoic acid)Cl₂] (a), [(Cymene)Ru(4-aminobenzamide)Cl₂] (b), [(Cymene)Ru(4-aminobenzylcyanide)Cl₂] (c), [(Cymene)Ru(methyl 4-aminobenzoate)Cl₂] (d) and [(Cymene)Ru(butyl 4-aminobenzoate)Cl₂] (e). Calculations were performed with the experimental structures (X-H bond normalized) as the starting point, at the BLYP-D3-ZORA/TZP level.

Figure S10. CSD searching queries for analysing C-H···C_{CN} interaction (search criteria: C-H···C contact within van der Waals distance + 0.0 Å and no disorder no error). The CSD searches have been done using Cambridge Structural Database, version 5.35 (Last update may 2014); CCDC: Cambridge, U.K., November 2013.

Table S1. Selected bond distances (Å) and angles (°) for complexes 1-8.

		Complex							
		1	2	3	4	5	6	7	8
Bond	Ru1-Cl1	2.427(3)	2.418(2)	2.425(2)	2.422(2)	2.407(3)	2.407(2)	2.409(4)	2.412(5)
distance	Ru1-Cl2	2.426(2)	2.425(1)	2.420(2)	2.402(2)	2.407(3)	2.423(2)	2.407(4)	2.418(5)
	Ru1-N1	2.18(1)	2.172(4)	2.168(6)	2.184(5)	2.171(9)	2.187(5)	2.16(1)	2.18(1)
	Ru2-Cl3	-	-	-	-	2.435(3)	-	-	-
	Ru2-Cl4	-	-	-	-	2.401(4)	-	-	-
	Ru2-N2	-	-	-	-	2.18(1)	-	-	-
Bond	Cl1-Ru1-Cl2	88.96(9)	88.49(6)	86.92(7)	87.36(6)	88.5(1)	87.30(7)	87.9(1)	88.5(2)
angle	Cl1-Ru1-N1	80.3(2)	82.0(1)	85.9(2)	80.1(1)	82.8(2)	84.0(2)	82.6(4)	81.0(4)
	Cl2-Ru1-N1	82.7(2)	80.5(1)	79.2(2)	83.7(1)	80.6(2)	80.0(2)	81.9(4)	83.1(4)
	Cl3-Ru2-Cl4	-	-	-	-	85.9(1)	-	-	-
	Cl3-Ru2-N2	-	-	-	-	81.9(3)	-	-	-
	Cl4-Ru2-N2	-	-	-	-	81.7(3)	-	-	-

 Table S2. Hydrogen bond geometries for compounds 1-8.

Compound	D-HA	d(D-H)/Å	d(HA)/Å	d(DA)/Å	< D-H A/°	Sym. Code
1	C10-H10Cl1	0.980	2.807(3)	3.74(1)	159.6(6)	1-x,-y,1-z
	C11-H11Cl2	0.980	2.922(3)	3.63(1)	129.8(6)	1-x,-y,1-z
	N1-H1BN2	0.90	2.40(2)	3.24(2)	155.9(6)	2-x,-1/2+y,1/2-z
	N1-H1ACl2	0.90	2.548(2)	3.365(7)	151.2(5)	2-x,-y, 1-z
	C17-H17CN2	0.960	2.72(2)	3.48(2)	136.3(9)	2-x,-1/2+y,1/2-z
	C13-H13Cl1	0.980	2.934(3)	3.55(1)	121.6(6)	1-x,1/2+y,1/2-z
2	C15-H15Cl1	0.980	2.770(2)	3.657(7)	150.9(4)	-x,2-y,1-z
	C14-H14Cl2	0.980	3.036(2)	3.892(8)	146.6(4)	-x,2-y,1-z
	N1-H1ACl2	0.90	2.802(2)	3.673(7)	162.2(3)	1-x,2-y,1-z
	C6-H6Cl2	0.930	2.792(2)	3.658(7)	155.4(4)	1-x,2-y,1-z
	N1-H1BN2	0.90	2.703(7)	3.572(9)	162.5(4)	X,1.5-y, ½+z
	С7-Н7ВС8	0.970	2.881(6)	3.675(8)	139.7(5)	1-x,1-y, 1-z
3	C4-H401	0.980	2.577(7)	3.45(1)	148.1(5)	-1/2+x,1/2-y, 1/2+z
	N1-H1ACl2	0.90	2.477(2)	3.349(7)	163.3(4)	1-x,-y,1-z
	N1-H1BO2	0.90	2.123(6)	3.004(8)	166.0(4)	-1+x,y,z
	C16-H16Cl2	0.93	2.880(2)	3.671(9)	143.8(5)	1-x,-y,1-z

4	C7-H7Cl1	0.980	2.924(2)	3.853(8)	158.3(4)	1-x,2-y,1-z
	C1-H1DCl2	0.960	2.966(2)	3.691(8)	133.3(5)	1-x,2-y,1-z
	N1-H1BCl1	0.90	2.411(2)	3.294(6)	166.8(3)	1-x,1-y,1-z
	N1-H1ACl2	0.90	2.503(2)	3.356(5)	158.3(3)	2-x,1-y,1-z
	C12-H12Cl1	0.930	2.863(2)	3.622(7)	139.6(4)	1-x,1-y,1-z
	C16-H16Cl1	0.930	2.817(2)	3.529(8)	134.3(4)	2-x,1-y,1-z
	C18-H18AO1	0.960	2.561(7)	3.42(1)	149.5(7)	3-x,-y,-z
5	C35-H35Cl2	0.930	2.807(3)	3.50(1)	131.8(7)	x,y,z
	N2-H2BCl2	0.90	2.455(3)	3.33(1)	165.5(6)	x,y,z
	N1-H1ACl3	0.90	2.502(3)	3.40(1)	179.2(6)	x,y,z
	N11-H1BCl1	0.90	2.461(3)	3.32(1)	159.4(6)	1-x,1-y,-z
	C22-H22Cl1	0.980	2.618(2)	3.57(1)	163.2(8)	-1+x,y, z
	C23-H23Cl2	0.980	2.843(3)	3.51(1)	125.6(8)	-1+x,y, z
	С3-Н3О2	0.980	2.52(1)	3.23(1)	128.7(7)	-x,-y,-z
6	С7-Н7Сl2	0.980	2.892(2)	3.820(8)	158.3(5)	1-x,2-y,-z
	C1-H1ECl1	0.960	3.003(2)	3.722(8)	132.7(5)	1-x,2-y,-z
	C12-H12Cl2	0.930	2.875(2)	3.609(9)	136.7(5)	1-x,1-y,-z
	C16-H16Cl2	0.930	2.811(2)	3.565(8)	139.0(5)	2-x,1-y,-z
	N1-H1ACl2	0.90	2.388(2)	3.282(7)	172.0(4)	1-x,1-y,-z
	N1-H1BCl1	0.90	2.477(2)	3.344(5)	161.9(4)	2-x,1-y,-z
	С20-Н20ВО2	0.960	2.74(1)	3.59(3)	147.0(1)	2-x, -y,1-z
7	C11-H11Cl1	0.980	2.801(4)	3.68(3)	150.0 (1)	-x,1/2+y,1/2-z
	C12-H12Cl2	0.980	2.733(4)	371(3)	175.0(2)	-x,1/2+y,1/2-z
	N1-H1ACl2	0.90	2.692(4)	3.46(1)	144.7(9)	3-x,1-y,-z
	N1-H1BCl1	0.90	2.926(4)	3.48(1)	121.1(9)	3-x,1-y,-z
	C14-H14O1	0.980	2.65(1)	3.49(3)	145.0(2)	1-x,1/2+y, 1/2-z
8	C5-H5Cl1	0.980	2.868(5)	3.80(2)	157.0(1)	2-x,-1-y,1-z
	N6-H6N2	0.980	2.688(6)	3.61(2)	161.0(1)	2-x,-1-y,1-z
	N1-H1ACl2	0.90	2.773(4)	3.38(1)	125.7(9)	2-x,-y,1-z
	N1-H1BCl1	0.90	2.525(5)	3.37(1)	157.8(9)	2-x,-y,1-z

Fable S3. Details of calculated hydroger	bonding interaction energies	(BLYP-D3-ZORA/TZP) of different complexes.
--	------------------------------	--

Complex	Fragmants	Basis-Set	Energy(KJ/mol)
[(Cymene)Ru(4-aminobenzoic acid)Cl ₂]	Fragment 1	BLYP-D3- ZORA/TZP	-24310.24
	Fragment 2	BLYP-D3- ZORA/TZP	-24310.46
	Fragment 1 Fragment 2	BLYP-D3- ZORA/TZP	-48717.54
	dimeric synthon	BLYP-D3- ZORA/TZP	-96.84 KJ/mol
[(Cymene)Ru(4-aminobenzamide)Cl ₂]	Fragment 1	BLYP-D3- ZORA/TZP	-24815.17
	Fragment 2	BLYP-D3- ZORA/TZP	-24815.51
	Fragment 1 Fragment 2	BLYP-D3- ZORA/TZP	- 49682.87
	dimeric synthon	BLYP-D3- ZORA/TZP	-52.19 KJ/mol
[(Cymene)Ru(4-aminobenzylcyanide)Cl ₂]	Fragment 1	BLYP-D3- ZORA/TZP	-24912.64
	Fragment 2	BLYP-D3- ZORA/TZP	-24912.78
	Fragment 1 Fragment 2	BLYP-D3- ZORA/TZP	-49842.79
	dimeric synthon	BLYP-D3- ZORA/TZP	-17.37 KJ/mol
[(Cymene)Ru(methyl 4-aminobenzoate)Cl ₂]	Fragment 1	BLYP-D3- ZORA/TZP	-25818.02
	Fragment 2	BLYP-D3- ZORA/TZP	-25817.32
	Fragment 1 Fragment 2	BLYP-D3- ZORA/TZP	-51652.88
	dimeric synthon	BLYP-D3- ZORA/TZP	-17.54 KJ/mol
[(Cymene)Ru(butyl 4-aminobenzoate)Cl ₂]	Fragment 1	BLYP-D3- ZORA/TZP	-30127.52
	Fragment 2	BLYP-D3- ZORA/TZP	-30127.21
	Fragment 1 Fragment 2	BLYP-D3- ZORA/TZP	-60302.22
	dimeric synthon	BLYP-D3- ZORA/TZP	-47.49 KJ/mol