Supporting Information For:

$AgIn_xGa_{1-x}S_2$ solid solution nanocrystals: synthesis, band gap tuning and photocatalytic activity

Na Liang^a, Qingquan He^a, Shoushuang Huang^a, Min Wang^a, Wenlong Chen^a, Miao Xu^a, Yanping Yuan^a, Jiantao Zai^{*a}, Nenghu Fang^a and Xuefeng Qian^{*a}

School of Chemistry and Chemical Engineering

State Key Laboratory of Metal Matrix Composites

Shanghai Jiao Tong University, Shanghai, 200240 (P. R. China)

E-mail: xfqian@sjtu.edu.cn; zaijiantao@sjtu.edu.cn

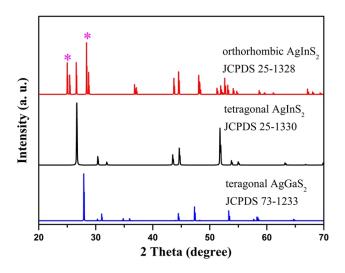


Fig. S1 XRD patterns of orthorhombic AgInS₂, tetragonal AgInS₂ and AgGaS₂.

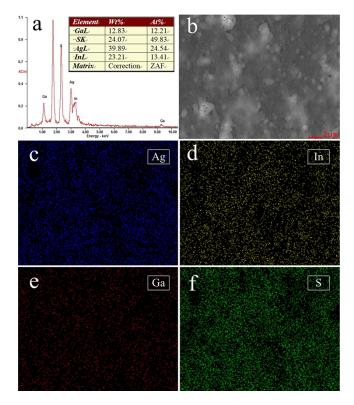


Fig. S2 EDX spectra and elemental distribution maps for Ag, In, Ga and S of the as-prepared $AgIn_{0.5}Ga_{0.5}S_2$ solid solutions.

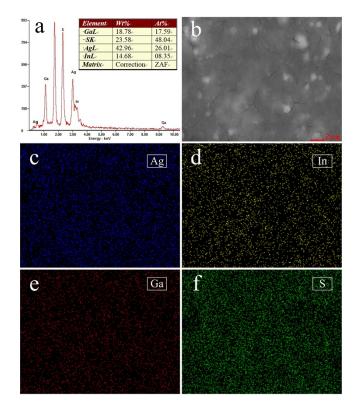


Fig. S3 EDX spectra and elemental distribution maps for Ag, In, Ga and S of the as-prepared $AgIn_{x0.3}Ga_{0.7}S_2$ solid solution.

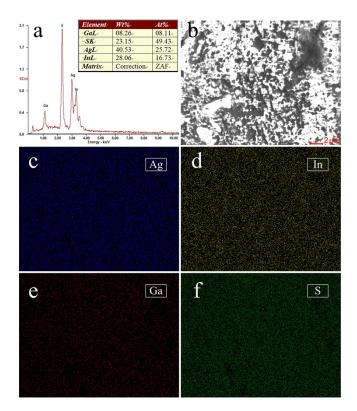


Fig. S4 EDX spectra and elemental distribution maps for Ag, In, Ga and S of the as-prepared $AgIn_{0.7}Ga_{0.3}S_2$ solid solution.

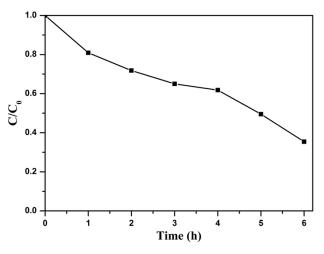


Fig. S5 Photocatalytic degradation of phenol aqueous solution (0.2 mmol L⁻¹) with AgIn_{0.3}Ga_{0.7}S₂ as photocatalyst under visible light irradiation (λ >400 nm).