Metal(II) complexes based on 4-(2,6-di(pyridin-4-yl)pyridin-4 yl)benzonitrile: structures and electrocatalytic properties for hydrogen evolution reaction from water

Xiao Lin Gao, ${ }^{a}$ Yun Gong,,${ }^{*}$ a Pan Zhang, ${ }^{\text {a }}$ Yong Xi Yang, ${ }^{\text {a }}$ Jiang Ping Meng, ${ }^{a}$ Miao Miao Zhang, ${ }^{\text {a Jun Li Yin }{ }^{\text {a }} \text { and JianHua Lin }{ }^{*} \text {, a, b }}$
${ }^{a}$ Department of Applied Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, P. R. China Tel: +86-023-65106150 E-mail: gongyun7211@cqu.edu.cn
${ }^{b}$ Zhejiang University, Hangzhou 310058, P. R. China Tel: +86-0571-88981583 E-mail: jhlin@zju.edu.cn; jhlin@cqu.edu.cn; jhlin@pku.edu.cn

Determination of Faradaic Efficiency

Controlled potential electrolyses were conducted in a $50 \mathrm{~mL} 0.5 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ solution at an applied potential of $\square-1.1 \mathrm{~V}$ vs $\operatorname{SCE}(\eta=-0.46 \mathrm{~V})$ for 0.5 hour. The pH change of the solution during the electrolysis was recorded with a pH meter. Assuming 100\% Faradaic efficiency, the theoretical pH change over time can be calculated by the equation of $\mathrm{pH}=$ $14+\lg \{\Sigma(\mathrm{It}) /(\mathrm{FV})\}$, where $\mathrm{I}=$ current $(\mathrm{A}), \mathrm{t}=$ time $(\mathrm{s}), \mathrm{F}=$ Faraday constant $(96485$ $\mathrm{C} / \mathrm{mol}), \mathrm{V}=$ solution volume $(0.05 \mathrm{~L}) .{ }^{1}$ The amount of H_{2} evolved was determined using gas chromatography (GC, 7890A, thermal conductivity detector (TCD), Ar carrier, Agilent). The theoretical (assuming 100\% Faradic efficiency) hydrogen volume is based on the amount of consumed charge during the course of electrolysis.

Table S1 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for complexes 1-3
Complex 1

$\mathrm{Ni}(1)-\mathrm{O}(5)$	$1.983(8)$	$\mathrm{Ni}(1)-\mathrm{O}\left(5^{\prime}\right)$	$2.191(12)$
$\mathrm{Ni}(1)-\mathrm{O}(7)$	$2.055(3)$	$\mathrm{Ni}(1)-\mathrm{O}(6)$	$2.074(3)$
$\mathrm{Ni}(1)-\mathrm{N}(2)$	$2.123(3)$	$\mathrm{Ni}(1)-\mathrm{N}(3) \# 1$	$2.124(3)$
$\mathrm{O}(5)-\mathrm{Ni}(1)-\mathrm{O}\left(1^{\prime}\right)$	$67.5(6)$	$\mathrm{O}(6)-\mathrm{Ni}(1)-\mathrm{O}\left(5^{\prime}\right)$	$171.3(6)$
$\mathrm{O}\left(1^{\prime}\right)-\mathrm{Ni}(1)-\mathrm{O}(1)$	$25.52(18)$	$\mathrm{O}(5)-\mathrm{Ni}(1)-\mathrm{O}(1)$	$92.6(6)$
$\mathrm{O}(7)-\mathrm{Ni}(1)-\mathrm{N}(3) \# 1$	$86.38(12)$	$\mathrm{O}\left(1^{\prime}\right)-\mathrm{Ni}(1)-\mathrm{N}(3) \# 1$	$96.8(2)$
$\mathrm{O}(6)-\mathrm{Ni}(1)-\mathrm{N}(2)$	$90.25(14)$	$\mathrm{N}(2)-\mathrm{Ni}(1)-\mathrm{N}(3) \# 1$	$175.24(12)$

Complex 2

$\mathrm{Co}(1)-\mathrm{O}(10)$	$2.073(4)$	$\mathrm{Co}(1)-\mathrm{O}(9)$	$2.143(4)$
$\mathrm{Co}(2)-\mathrm{O}(13)$	$2.080(4)$	$\mathrm{Co}(2)-\mathrm{O}(12)$	$2.123(4)$
$\mathrm{Co}(1)-\mathrm{N}(2)$	$2.169(4)$	$\mathrm{Co}(1)-\mathrm{N}(3)$	$2.172(5)$
$\mathrm{Co}(2)-\mathrm{N}(6)$	$2.175(4)$	$\mathrm{Co}(2)-\mathrm{N}(7)$	$2.179(4)$
$\mathrm{O}(1)-\mathrm{Co}(1)-\mathrm{O}(9)$	$85.07(17)$	$\mathrm{O}(11)-\mathrm{Co}(1)-\mathrm{O}(1)$	$178.84(16)$
$\mathrm{O}(14)-\mathrm{Co}(2)-\mathrm{O}(12)$	$177.07(16)$	$\mathrm{O}(13)-\mathrm{Co}(2)-\mathrm{O}(14)$	$85.60(18)$
$\mathrm{O}(11)-\mathrm{Co}(1)-\mathrm{N}(3)$	$85.62(17)$	$\mathrm{O}(1)-\mathrm{Co}(1)-\mathrm{N}(3)$	$94.79(17)$
$\mathrm{O}(13)-\mathrm{Co}(2)-\mathrm{N}(6)$	$85.77(17)$	$\mathrm{O}(5)-\mathrm{Co}(2)-\mathrm{N}(6)$	$95.42(18)$
$\mathrm{N}(2)-\mathrm{Co}(1)-\mathrm{N}(3)$	$173.0(2)$	$\mathrm{N}(6)-\mathrm{Co}(2)-\mathrm{N}(7)$	$173.6(2)$
Complex 3			$2.349(6)$
$\mathrm{Cd}(1)-\mathrm{O}(10)$	$2.287(6)$	$\mathrm{Cd}(1)-\mathrm{O}(11)$	$2.360(7)$
$\mathrm{Cd}(2)-\mathrm{O}(14)$	$\mathrm{Cd}(2)-\mathrm{O}(12)$		

$\mathrm{Cd}(1)-\mathrm{N}(2)$	$2.330(6)$	$\mathrm{Cd}(1)-\mathrm{N}(3) \# 2$	$2.335(7)$
$\mathrm{Cd}(2)-\mathrm{N}(7) \# 2$	$2.342(7)$	$\mathrm{Cd}(2)-\mathrm{N}(6)$	$2.343(7)$
$\mathrm{O}(10)-\mathrm{Cd}(1)-\mathrm{O}(11)$	$83.8(2)$	$\mathrm{O}(9)-\mathrm{Cd}(1)-\mathrm{O}(11)$	$174.9(2)$
$\mathrm{O}(14)-\mathrm{Cd}(2)-\mathrm{O}(13)$	$83.9(3)$	$\mathrm{O}(5)-\mathrm{Cd}(2)-\mathrm{O}(13)$	$178.6(2)$
$\mathrm{O}(10)-\mathrm{Cd}(1)-\mathrm{N}(2)$	$84.6(2)$	$\mathrm{O}(1)-\mathrm{Cd}(1)-\mathrm{N}(2)$	$96.8(3)$
$\mathrm{O}(13)-\mathrm{Cd}(2)-\mathrm{N}(6)$	$82.1(2)$	$\mathrm{O}(5)-\mathrm{Cd}(2)-\mathrm{N}(6)$	$98.9(2)$
$\mathrm{N}(2)-\mathrm{Cd}(1)-\mathrm{N}(3) \# 1$	$171.1(2)$	$\mathrm{N}(7) \# 1-\mathrm{Cd}(2)-\mathrm{N}(6)$	$166.9(3)$

Symmetry transformations used to generate equivalent atoms:
$\# 1 \mathrm{x}-1 / 2,-\mathrm{y}+5 / 2, \mathrm{z}-1 / 2 \quad \# 2 \mathrm{x}+1 / 2,-\mathrm{y}+3 / 2, \mathrm{z}+1 / 2$

Scheme S1 Schematic representation of \mathbf{L}

Fig.S1 The powder XRD patterns for complexes $\mathbf{1}$ (a), 2 (b) and $\mathbf{3}$ (c).

Fig. S2 CVs of the bare GCE in the $0.5 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ aqueous solution (50 mL) at different sweep rates.

Fig. S3 CVs of the $\mathbf{L - G C E}$ in the $0.5 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ aqueous solution (50 mL) at different sweep rates.

Fig. S4 CVs of the $\mathbf{1 - G C E}$ in the $0.5 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ aqueous solution (50 mL) at different sweep rates.

Fig. S5 CVs of the 2-GCE in the $0.5 \mathrm{M} \mathrm{Na}{ }_{2} \mathrm{SO}_{4}$ aqueous solution (50 mL) at different sweep rates.
(a)

(b)

Fig. S6 Current intensity (i) / overpotential (η) diagrams (a) for the HER at the bare GCE,

1-GCE, 2-GCE or composite-GCE in $0.5 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ solution (50 mL) at sweep rates of $10 \mathrm{mV} \cdot \mathrm{s}^{-1}$; Tafel plots of $\log i$ against overpotential η for the HER (The linear part of the Tafel curves denoted in black dotted lines with the intercept at the y axis) (b).

Fig. $\mathbf{S 7}$ The plots of $\mathrm{i}_{\mathrm{p}} / v^{1 / 2}$ against scan rate v.

Fig. S8 Controlled potential electrolysis of $\mathbf{1 - G C E}$ (current density $=1.74 \mathrm{~mA} / \mathrm{cm}^{2}$) (green), 2-GCE (current density $=4.33 \mathrm{~mA} / \mathrm{cm}^{2}$) (red) and the bare $\mathbf{G C E}$ (current density $=1.34 \mathrm{~mA} / \mathrm{cm}^{2}$) (pink) in the $0.5 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ aqueous solution (50 mL), showing charge buildup versus time with an applied potential of -1.1 V vs $\operatorname{SCE}(\eta=-0.44 \mathrm{~V})$.
(a)

before 0.5 h - electrolysis at -1.1 V vs SCE
(b)

after 0.5 h - electrolysis at -1.1 V vs SCE

Fig. S9 The images of 1-GCE (a) and 2-GCE (b) before and after electrolysis at -1.1 V vs SCE.
(a)

(b)

Fig. S10 UV-vis absorption spectra at room temperature for the $\mathrm{Na}_{2} \mathrm{SO}_{4}$ solution in the presence of $\mathbf{1 - G C E}$ (a) or $\mathbf{2 - G C E}$ (b) before and after electrolysis at -1.1 V vs SCE.

Fig. S11 CVs of the 3-GCE in the $0.5 \mathrm{M} \mathrm{Na} \mathrm{Na}_{2} \mathrm{SO}_{4}$ aqueous solution $(50 \mathrm{~mL})$ at different sweep rates.

Fig. S12 Raman spectrum $\left(\lambda_{\mathrm{ex}}=514.5 \mathrm{~nm}, 0.4 \mathrm{~mW}\right)$ of the graphene.
(a)

(b)

(c)

Fig. S13 SEM images of the complex $1 /$ graphene composite.
(a)

(b)

Fig. S14 CVs of the bare GCE, 1-GCE, graphene-GCE and composite-GCE in 0.5 M $\mathrm{Na}_{2} \mathrm{SO}_{4}$ solution $(50 \mathrm{~mL})$ at a sweep rate of $20(\mathbf{a})$ and $50 \mathrm{mV} \cdot \mathrm{s}^{-1}(\mathbf{b})$.

Fig. S15 UV-vis absorption spectra at room temperature for the free organic ligand \mathbf{L} and complexes 1-3.

Fig. S16 Solid-state emission spectra at room temperature for the free ligand \mathbf{L} and complex 3.

Fig.S17 Thermogravimetric curves of complexes $\mathbf{1}$ (green), $\mathbf{2}$ (red) and $\mathbf{3}$ (brown).

References:

1 Y. J. Sun, J. P. Bigi, N. A. Piro, M. L. Tang, J. R. Long and C. J. Chang, J. Am. Chem. Soc., 2011, 133, 9212.

