Metal(II) complexes based on 4-(2,6-di(pyridin-4-yl)pyridin-4 yl)benzonitrile: structures and electrocatalytic properties for hydrogen evolution reaction from water

Xiao Lin Gao,^a Yun Gong,^{*,a} Pan Zhang,^a Yong Xi Yang, ^a Jiang Ping Meng, ^a Miao Miao Zhang, ^a Jun Li Yin ^a and JianHua Lin^{*, a, b}

^a Department of Applied Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, P. R. China Tel: +86-023-65106150 E-mail: gongyun7211@cqu.edu.cn

^b Zhejiang University, Hangzhou 310058, P. R. China Tel: +86-0571-88981583 E-mail: jhlin@zju.edu.cn; jhlin@cqu.edu.cn; jhlin@pku.edu.cn

Determination of Faradaic Efficiency

Controlled potential electrolyses were conducted in a 50 mL 0.5 M Na₂SO₄ solution at an applied potential of \Box -1.1 V vs SCE (η = -0.46V) for 0.5 hour. The pH change of the solution during the electrolysis was recorded with a pH meter. Assuming 100% Faradaic efficiency, the theoretical pH change over time can be calculated by the equation of pH = 14 + lg { Σ (It)/(FV)}, where I = current (A), t = time (s), F = Faraday constant (96485 C/mol), V = solution volume (0.05 L). ¹ The amount of H₂ evolved was determined using gas chromatography (GC, 7890A, thermal conductivity detector (TCD), Ar carrier, Agilent). The theoretical (assuming 100% Faradic efficiency) hydrogen volume is based on the amount of consumed charge during the course of electrolysis.

Complex 1			
Ni(1)-O(5)	1.983(8)	Ni(1)-O(5')	2.191(12)
Ni(1)-O(7)	2.055(3)	Ni(1)-O(6)	2.074(3)
Ni(1)-N(2)	2.123(3)	Ni(1)-N(3)#1	2.124(3)
O(5)-Ni(1)-O(1')	67.5(6)	O(6)-Ni(1)-O(5')	171.3(6)
O(1')-Ni(1)-O(1)	25.52(18)	O(5)-Ni(1)-O(1)	92.6(6)
O(7)-Ni(1)-N(3)#1	86.38(12)	O(1')-Ni(1)-N(3)#1	96.8(2)
O(6)-Ni(1)-N(2)	90.25(14)	N(2)-Ni(1)-N(3)#1	175.24(12)
Complex 2			
Co(1)-O(10)	2.073(4)	Co(1)-O(9)	2.143(4)
Co(2)-O(13)	2.080(4)	Co(2)-O(12)	2.123(4)
Co(1)-N(2)	2.169(4)	Co(1)-N(3)	2.172(5)
Co(2)-N(6)	2.175(4)	Co(2)-N(7)	2.179(4)
O(1)-Co(1)-O(9)	85.07(17)	O(11)-Co(1)-O(1)	178.84(16)
O(14)-Co(2)-O(12)	177.07(16)	O(13)-Co(2)-O(14)	85.60(18)
O(11)-Co(1)-N(3)	85.62(17)	O(1)-Co(1)-N(3)	94.79(17)
O(13)-Co(2)-N(6)	85.77(17)	O(5)-Co(2)-N(6)	95.42(18)
N(2)-Co(1)-N(3)	173.0(2)	N(6)-Co(2)-N(7)	173.6(2)
Complex 3			
Cd(1)-O(10)	2.287(6)	Cd(1)-O(11)	2.349(6)
Cd(2)-O(14)	2.292(7)	Cd(2)-O(12)	2.360(7)

Table S1 Selected bond lengths (Å) and angles (°) for complexes 1-3 $\,$

Cd(1)-N(2)	2.330(6)	Cd(1)-N(3)#2	2.335(7)
Cd(2)-N(7)#2	2.342(7)	Cd(2)-N(6)	2.343(7)
O(10)-Cd(1)-O(11)	83.8(2)	O(9)-Cd(1)-O(11)	174.9(2)
O(14)-Cd(2)-O(13)	83.9(3)	O(5)-Cd(2)-O(13)	178.6(2)
O(10)-Cd(1)-N(2)	84.6(2)	O(1)-Cd(1)-N(2)	96.8(3)
O(13)-Cd(2)-N(6)	82.1(2)	O(5)-Cd(2)-N(6)	98.9(2)
N(2)-Cd(1)-N(3)#1	171.1(2)	N(7)#1-Cd(2)-N(6)	166.9(3)

Symmetry transformations used to generate equivalent atoms:

#1 x-1/2, -y+5/2, z-1/2 #2 x+1/2, -y+3/2, z+1/2

Scheme S1 Schematic representation of ${\bf L}$

Fig.S1 The powder XRD patterns for complexes 1 (a), 2 (b) and 3 (c).

Fig. S2 CVs of the bare GCE in the $0.5M \text{ Na}_2\text{SO}_4$ aqueous solution (50 mL) at different sweep rates.

Fig. S3 CVs of the L-GCE in the $0.5M \text{ Na}_2\text{SO}_4$ aqueous solution (50 mL) at different sweep rates.

Fig. S4 CVs of the 1-GCE in the $0.5M \text{ Na}_2\text{SO}_4$ aqueous solution (50 mL) at different sweep rates.

Fig. S5 CVs of the 2-GCE in the $0.5M \text{ Na}_2\text{SO}_4$ aqueous solution (50 mL) at different sweep rates.

Fig. S6 Current intensity (i) / overpotential (η) diagrams (a) for the HER at the bare GCE,

1-GCE, **2-GCE** or **composite-GCE** in 0.5 M Na₂SO₄ solution (50mL) at sweep rates of 10 mV·s⁻¹; Tafel plots of *logi* against overpotential η for the HER (The linear part of the Tafel curves denoted in black dotted lines with the intercept at the *y* axis) (**b**).

Fig.S7 The plots of $i_p / v^{1/2}$ against scan rate v.

Fig. S8 Controlled potential electrolysis of 1-GCE (current density = 1.74 mA/cm^2) (green), 2-GCE (current density = 4.33 mA/cm^2) (red) and the bare GCE (current density = 1.34 mA/cm^2) (pink) in the 0.5 M Na₂SO₄ aqueous solution (50mL), showing charge buildup versus time with an applied potential of -1.1V vs SCE ($\eta = -0.44V$).

before 0.5 h- electrolysis at -1.1V vs SCE

after 0.5 h- electrolysis at -1.1V vs SCE

before 0.5 h- electrolysis at -1.1V vs SCE

after 0.5 h- electrolysis at -1.1V vs SCE

Fig. S9 The images of 1-GCE (a) and 2-GCE (b) before and after electrolysis at -1.1V vs SCE.

Fig. S10 UV-vis absorption spectra at room temperature for the Na₂SO₄ solution in the

presence of 1-GCE (a) or 2-GCE (b) before and after electrolysis at -1.1 V vs SCE.

Fig. S11 CVs of the 3-GCE in the $0.5M \text{ Na}_2\text{SO}_4$ aqueous solution (50 mL) at different sweep rates.

Fig. S12 Raman spectrum ($\lambda_{ex} = 514.5 \text{ nm}, 0.4 \text{ mW}$) of the graphene.

(**c**) x27,000 5.0kV UED GB WD 3.9mm 18:40:08 Fig. S13 SEM images of the complex 1/graphene composite.

(b)

Fig. S14 CVs of the bare GCE, 1-GCE, graphene-GCE and composite-GCE in 0.5 M

 Na_2SO_4 solution (50mL) at a sweep rate of 20 (a) and 50 mV·s⁻¹ (b).

Fig. S15 UV-vis absorption spectra at room temperature for the free organic ligand L and complexes 1-3.

Fig. S16 Solid-state emission spectra at room temperature for the free ligand L and complex 3.

Fig.S17 Thermogravimetric curves of complexes 1 (green), 2 (red) and 3 (brown).

References:

1 Y. J. Sun, J. P. Bigi, N. A. Piro, M. L. Tang, J. R. Long and C. J. Chang, *J. Am. Chem. Soc.*, **2011**, *133*, 9212.