Electronic Supplementary Information (ESI) for CrystEngComm

Three mixed-ligand coordination networks modulated by flexible Ndonor ligands: Syntheses, topological structures, and temperaturesensitive luminescence properties

Zhi-Hao Yan^{a,b} Lu-Lu Han,^a Ya-Qin Zhao,^a Xiao-Yu Li,^a Xing-Po Wang,^a Lei Wang^b and Di Sun,^{*,a}

^aKey Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China.

E-mail: dsun@sdu.edu.cn; Fax: +86-531-88364218.

^bCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.

(1) Fig. S1: The powder XRD patterns and the simulated one from the single-crystal diffraction data for compounds 1-3

(2) Fig. S2 IR spectrum of 1-3.

Compound 1

Compound 2

Compound 3

(3) Fig. S3: The infinite 1D zig-zag chain formed by Zn(II) cation centers and tbtpa ligands.

(4) Fig. S4: TG curves of compounds 1-3

(5) Fig. S5: The emission decay curves for 2 and 3.

(6) Table S1: Summary of the synthesis of tbtpa-based coordination networks.

оуон	Different N-donor ligands	Structures	Literature/synthesis condition
Br Br Br Br		2-fold interpenetrated network (1) (1) (2) (2) (2) (2) (2) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4	CrystEngComm, 2013, 15, 5552–5560. Synthesis of 1 : A mixture of $Cd(NO_3)_2$ ·4H ₂ O (123.4 mg, 0.4 mmol), tib (110.4 mg, 0.4 mmol) and H ₂ tbtpa (192.7 mg, 0.4 mmol), KOH (1.2 mg, 0.02 mmol) were dissolved in 10 mL methanol–H ₂ O (<i>v</i> : <i>v</i> = 1 : 1) in a 25 mL Teflon-lined stainless steel vessel. The mixture was sealed and heated at 120 °C for 72 min. After the mixture was cooled to room temperature. The pale yellow block crystals were collected. Synthesis of 2 : Synthesis of 2 was similar to that of 1, but the ratio of Cd(NO ₃) ₂ ·4H ₂ O/tib/H ₂ tbtpa is 1 : 1 : 2. Yellow crystals of 2 were obtained.
Br HO OH HO O			Synthesis of 3 : Synthesis of 3 was similar to that of 1 , but the ratio of $Cd(NO_3)_2 \cdot 4H_2O/tib/H_2tbtpa is 1 : 1 : 3$.
	n Sn - O - N - N 	C_{4}^{μ} $D + 2D3D polycateane (1)$ C_{4}^{μ} Z_{4}^{μ} $D + 2D - 2D polycotaxae (2)$	CrystEngComm, 2012, 14, 7856–7860. Synthesis of 2 : A mixture $Zn(NO_3)_2 \cdot 6H_2O$ (5.9 mg, 0.02 mmol), bmimbp (3.42 mg, 0.01 mmol) and H_2 tbtpa (14.5 mg, 0.03 mmol), NaOH (0.8 mg, 0.02 mmol) were dissolved in 1 mL DMF-H ₂ O ($v:v = 1:1$) and heated in a sealed Perex tube at 120 °C for 83 hours. After the mixture was cooled to room temperature. Pale-yellow crystals of 2 were obtained.

In this assembly system, previous work mainly focused on rigid or semi-rigid N-donor ligands, whereas flexible ligands
have been rarely explored. In order to explore the influence of flexible N-donor ligands on the tuning of entangled
networks and achieve different topological structures, here we have adopted three such flexible N-donor ligands viewing
their difference of length and configuration and influence on the final structures. In addition, as shown in above table,
several other N-donor ligands were also selected in this system, but no crystalline products could be obtained yet, although
many synthetic conditions have been tried.