Electronic Supplementary Information

for:

A plasma-assisted approach for the controlled dispersion of CuO aggregates into β iron(III) oxide matrices

G. Carraro,^a A. Gasparotto,^a C. Maccato,^a E. Bontempi,^b F. Bilo,^b D. Peeters,^a C. Sada,^c and D. Barreca^{*d}

^a Department of Chemistry - Padova University and INSTM - 35131 Padova, Italy.

^b Chemistry for Technologies Laboratory - Brescia University and INSTM - 25123 Brescia, Italy.

^c Department of Physics and Astronomy - Padova University, 35131 Padova, Italy.

^d CNR-IENI and INSTM - Department of Chemistry - Padova University - 35131 Padova, Italy.

*Corresponding author: Tel: + 39 049 8275170; E-mail: davide.barreca@unipd.it (D.B.).

Figure S1. Plane-view and cross-sectional FE-SEM micrographs of pure β -Fe₂O₃ nanosystems.

Figure S2. Core-level Fe2p (a) and Cu2p (b) surface peaks for Fe_2O_3/CuO nanocomposites with different Cu sputtering times.