Supplementary Information

Growth of photoluminescent Ag₂Se nanowires from a simple

precursor solution

Lianjiang Tan*, Jiajia Fu, Shuiping Liu*

Fig. S1 SEM micrographs (a-c), AFM micrographs (d-f) and the corresponding size distribution

(g-i) of Ag₂Se nanowires synthesized over varied reaction times: (a,d,g) 24 h; (b,e,h) 48 h; (c,f,i)

No.	Se	Ag	Atomic Ratio
1	34.23	64.35	1.88
2	34.07	63.03	1.85
3	34.11	64.45	1.89
4	34.58	63.28	1.83
5	33.99	64.92	1.91
6	34.70	63.50	1.83
7	34.77	64.67	1.86
8	34.75	63.59	1.83
Average	34.40	63.98	1.86
STDEV	0.332	0.706	0.031

Table S1 EDX data for Ag_2Se nanowires of 10.4 nm.

Fig. S2 (a) Full XPS spectrum of Ag₂Se nanowires. (b) Ag 3d signals and (c) Se 3d signals

Fig. S3 PL excitation spectrum of the Ag₂Se nanowires of 10.4 nm.

Fig. S4 PL spectra of the Ag₂Se nanowires and Ag₂Se QDs synthesized according to the method

reported previously 1 at the same concentration of 10 $\mu g/mL.$

References

1 L. Tan, A. Wan, X. Zhu, R. Huang and H. Li, ACS Appl. Mater. Interfaces., 2014, 6, 6217.