An innovative glycine complexing approach to silver

phosphate myriapods with improved photocatalytic activity

Lili Wang, Na Li, Qiuying Zhang, Sunqi Lou, Yunxuan Zhao, Mindong Chen, Fei Teng*

Jiangsu Engineering and Technology Research Center of Environmental Cleaning Materials, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Sciences and Engineering, Nanjing University of Information Sciences and Engineering, Nanjing 210044, China. Corresponding author. Email: tfwd@163.com (F. Teng); Phone/Fax: +86-25-58731090

1. Experimental Section

1.1 Chemicals: All chemicals used were analytic grade reagents without further purification; glycine (NH₂CH₂COOH), silver nitrate (AgNO₃), 85% phosphoric acid (85% H₃PO₄), were purchased from Shanghai Reagents Company (Shanghai, China). *1.2 Synthesis of etched and hollow Ag₃PO₄ dendrites:* In a typical synthesis, 0.075~0.6006g glycine (1mmol~8mmol) and 0.3398g (2mmol) Ag₃NO₄ was dissolved into 10 mL deionized water, severally. Then, Ag₃NO₄ solution was poured into glycine solution under stirring for 1h. Finally, 28μ L of 85 wt.% H₃PO₄ was added drop wise to the solution above. Upon H₃PO₄ was introduced into the system, did the color of the reaction mixture change from hyaline colorless to bright yellow. The whole process was carried out at room temperature (20 °C) under stirring. After stirring for 40 min, the yellow precipitation was collected, washed with deionized water for several times, and dried at room temperature. Schematic S1 shows the preparation process for etched and hollow Ag₃PO₄ dendrites.

Scheme S1. Schematic illustration of the preparation process

1.3 Synthesis of solid Ag_3PO_4 *tetrapods:* Solid sample is synthesized as our previously reported.¹ In a typical procedure, 3 mmol of 85% H₃PO₄ was dissolved in 80 mL of deionized water and 2.5 mmol of AgNO₃ was added under stirring. Then, 37.5 mmol of urea were put into the above solution. The resulting precursor was transferred into a Teflon-lined stainless steel autoclave and maintained at 80°C for 24h. After cooling to room temperature, the yellow precipitation was collected and washed with deionized water several times, and dried overnight at 60°C.

*1.4 Synthesis of Irregular Ag*₃*PO*₄: The irregular Ag₃PO₄ particles were synthesized as previously reported.¹ Typically, appropriate amounts of raw powders of Na₂HPO₄ and AgNO₃ were thoroughly ground until the initial white changed to yellow.

1.5 *N*-doped TiO_2 (*NTs*): Nitrogen doping was conducted as described previously.² Typically, 0.5 g of Degauss P25 TiO₂ powders was suspended in ethanol (5 mL). Then, urea (1 g) was dissolved in 2.5 mL ethanol and 0.5 mL H₂O was added into the suspension above. The mixture was stirred and heated to completely evaporate the solvent, followed by calcination in air at 400 °C for 4 h.

2. Photocatalytic degradation reactions

Photocatalytic activities of the samples were evaluated by photocatalytic decomposition of rhodamine B (RhB). Typically, 0.1 g of powders were put into a solution of RhB (200 mL, 50 mg/L), which was irradiated with a 300W Xe arc lamp equipped with an ultraviolet cut off filter to provide visible light ($\lambda \ge 420$ nm).

The cycle experiments are carried out under the same conditions as above.

3. Characterization

Scanning electron microscope (SEM) images of the samples were obtained on a Hitachi SU-1510 operated at 120 kV. The samples were coated with 5-nm-thick gold layer before observation. The phase compositions of the samples were determined by X-ray diffractometer (Rigaku D/max-2550VB) using graphite monochromatized Cu $K_{\alpha\Box}$ radiation ($\lambda = 0.154$ nm), operating at 40 kV and 50mA. The XRD patterns were scanned in the range of 20-80° (2 θ) at a scanning rate of 5 °min⁻¹. Nitrogen adsorption-desorption isotherms were collected at 77 K using the NOVOE 4000 adsorption apparatus.

References

- J. Wang, F. Teng, M. Chen, J. Xu, Y. Song and X. Zhou, *CrystEngComm.*, 2013, 15, 39.
- (2) Mitoraj, D. and Kisch, H., Angew. Chem., Int. Ed., 2008, 47, 9975.

Fig. S1 Low-magnification SEM images of Ag_3PO_4 crystals synthesized at different molar ratios of glycine to $AgNO_3$: (A) 0.5:1; (B) 1:1; (C) 2:1; (D) 3:1; (E) 4:1. Reaction temperature: 20 °C; Stirring time upon adding phosphate acid: 40 min.

When the reaction time and temperature are different, the morphology of Ag_3PO_4 changes from eroded myriapods to hollow dendrites.

(A)

(B)

Fig. S2 Low-magnification SEM images of Ag_3PO_4 crystals synthesized at different stirring time upon adding phosphate acid: (A) 0 min; (B) 15min; (C) 30min; (D) 40min. Reaction temperature: 20 °C; glycine /Ag⁺ =4:1 (molar ratio).

×

(B)

(A)

(C)

Fig. S3 Low-magnification SEM images of Ag_3PO_4 crystals synthesized at different temperature: (A) 30 °C; (B) 40°C; (C) 50 °C. glycine /Ag⁺ =4:1 (molar ratio); Stirring time upon adding phosphate acid: 40 min.

(B)

Fig. S3 Low-magnification SEM images of Ag_3PO_4 synthesized using 0.4092 mmol of different phosphorus sources and XRD patterns (D): (A) 85 wt.% H₃PO₄; (B) NaH₂PO₄; (C) Na₃PO₄. glycine /Ag⁺ =4:1 (molar ratio); Stirring time upon adding of phosphate acid: 40 min.

Not only the amount of glycine added, reaction time and reaction temperature have affected the result, but also the pH values do. We control the pH values by changing phosphorus source only. 28 μ L of 85 wt.% H₃PO₄ is equivalent to 0.4092 mmol. Thus, 0.4092 mmol (0.04909 g) NaH₂PO₄ and (0.06708 g) Na₃PO₄ were set to compare, aiming to keep the amount of PO₄³⁻ the same. The experiment process carried out exactly the same except phosphorus source changing. Fig. S3(B) is low-magnification SEM images using NaH₂PO₄ source. The crystals of myriapods are small and cluster together. No hollow crystal is seen. Correspondingly, there is no specific morphology in Fig. S3(C) with Na₃PO₄ source. Even so, the XRD patterns indicate all the samples are pure Ag₃PO₄. pH values of the three system is shown below in Table 1

phosphorus source	pH
H ₃ PO ₄	3.02
NaH ₂ PO ₄	3.16
Na ₃ PO ₄	4.85

Table 1 pH values of the three system using H₃PO₄, NaH₂PO₄ and Na₃PO₄

Fig. S4 Cycle curves (a,b), SEM (c) and XRD (d) of the etched Ag₃PO₄ sample under visible light irradiation ($\lambda > 420$ nm): 200 mL 50mg mL⁻¹ RhB; 100 mg of the sample represented in Fig. 2D; (e) cycle curves of the un-etched Ag₃PO₄ sample represented in solid.