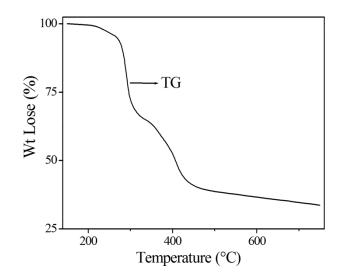
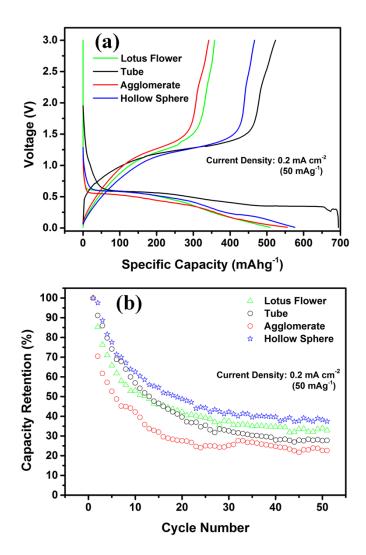
Electronic Supplementary Information (ESI)

Morphology mediated tailoring the performance of porous nanostructured Mn₂O₃ as anode material

Provas Pal,^a Arnab Kanti Giri,^a Sourindra Mahanty, ^{b,*} Asit Baran Panda ^{a,*}


^a Discipline of Inorganic Materials and Catalysis, Central Salt and Marine Chemicals

Research Institute (Council of Scientific and Industrial Research), G.B. Marg, Bhavnagar-


364021, Gujarat, India.

^b Fuel Cell & Battery Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata

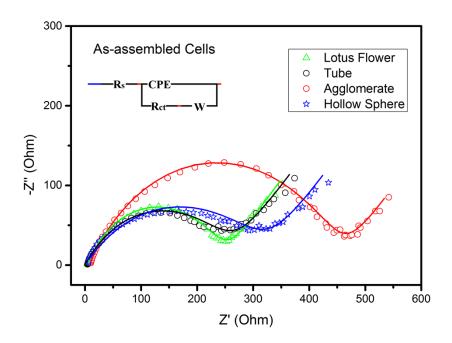

- 700032, India

Figure S1 *TG* analysis curve of the synthesized lotus shaped $MnCO_3$ in air at a rate of 5°C min⁻¹.

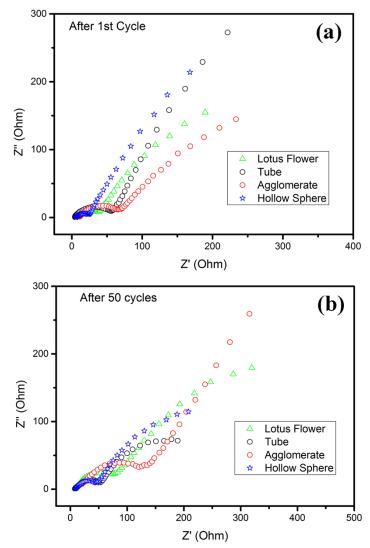


Figure S2 (a) Discharge-charge profiles of Mn2O3//Li cells for the 2^{nd} cycle (b) capacity retention plots for of the synthesized Mn_2O_3 with different shapes

Fig. S3. Impedance spectra of as-assembled $Mn_2O_3//Li$ cells. Solid lines represent fitted plot using the equivalent circuit shown in the inset.

Sample	$R_{s}(\Omega)$	$R_{ct}(\Omega)$	CPE (µF)	W (Ω)
Lotus Flower	4.1	242	35	82
Tube	4.4	263	85	87
Agglomerate	7.3	450	26	63
Hollow Sphere	4.6	327	83	86

Fig. S4. Impedance spectra of $Mn_2O_3//Li$ cells at different cycling intervals (a) after the 1st cycle and (b) after the 50th cycle.