Electronic Supplementary Information

CrystEngComm

"Low-Temperature Crystal Growth of Aluminium-Doped Zinc Oxide Nanoparticles in a Melted Viscous Liquid of Alkylammonium Nitrates for Fabrication of Their Transparent Crystal Films"

Hiroki Kaneko,^a Takanari Togashi,^a Takashi Naka,^b Manabu Ishizaki,^a Katsuhiko Kanaizuka,^a Masatomi Sakamoto^a and Masato Kurihara*^a

^b National Institute for Material Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan

^a Department of Material and Biological Chemistry, Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata 990-8560, Japan.

i anagata 990 0500, supan.

Fig. S1 FT-IR spectrum of the isolated AZO nanoparticles.

Fig. S2 TG profile of the isolated AZO nanoparticles.

Fig. S3 Mass spectra of the isolated AZO nanoparticles adsorbing surface-protecting molecules (a) and isopropylamine from the database (b).

Fig. S4 The three-step heating program (a) and the corresponding TG profile (b) of the precursor dispersion solution of 2% AZO nanoparticles.

Synthesis of isopropylammonium nitrate

A methanol solution (50 mL) of isopropylamine (5.91 g, 0.100 mol) was dropped to 60% HNO₃ (9.00 g), heated at 60°C for 15 min, and cooled to room temperature. Needle-shaped crystals of isopropylammonium nitrate (($C_3H_7NH_3$)NO₃) were separated from the solution by filtration, washed with methanol and dried under air.

Fig. S5 TG-DTA profile of the synthesised isopropylammonium nitrate.

Fig. S6 Cross-section SEM images of the fabricated AZO films using various volumes of the precursor dispersion solutions; 100 (a), 200 (b), 400 (c), 600 (d), 800 (e), and 1000 μ L (f).

Fig. S7 Hall resistivity of the 2% AZO films before (a) and after (b) post-annealing in a stream of a mixed gas of N_2 and H_2 ($N_2/H_2 = 96 : 4 \text{ v/v}$) at 450°C. The Hall resistivity was measured under He at 300 K.

Table S1. R_H , n, ρ , and μ of 2% AZO films before and after post-annealing in a stream of a mixed gas of N₂ and H₂ (N₂/H₂ = 96 : 4 v/v) at 450°C*

	$R_H / { m cm}^3{ m C}^{-1}$	<i>n</i> / cm ⁻³	$ ho/\Omega$ cm	μ / cm ² V ⁻¹ s ⁻¹
Before post-annealing	-25.365	$2.30 imes 10^{18}$	3.4 × 10	7.88×10^{-2}
After post-annealing	-2.095	$2.97 imes 10^{19}$	4.3 × 10 ⁻²	4.85

*Electron density, *n*, and mobility, μ , of AZO films before and after post-annealing were calculated using the equations as described below (Table S1):

$n=1 / R_{H}e$	(1)
$\mu = 1 / ne\rho$	(2)

 R_H , *e*, and ρ are the Hall coefficient, electrical charge, and measured resistivity of AZO films, respectively. R_H was calculated from the slope of Fig. S7.

Fig. S8 Plot of the Al doping ratio versus the sheet resistance of AZO films heated in a stream of a mixed gas of N_2 and H_2 ($N_2/H_2 = 96 : 4 \text{ v/v}$) at 450°C.