Magnetic-field-assisted hydrothermal synthesis of 2×2 tunnels of MnO₂ nanostructures with enhanced supercapacitor performance

Jiajia Shao, ^{a, ‡} Wenyao Li, ^{a, b, ‡} Xiying Zhou^{a,*} and Junqing Hu^{b,*}

^aSchool of material engineering, Shanghai university of engineering science, Shanghai 201620, China.

^bState Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.

* E-mail: xiyingzhou@yahoo.com; hu.junqing@dhu.edu.cn

Supplementary Figures

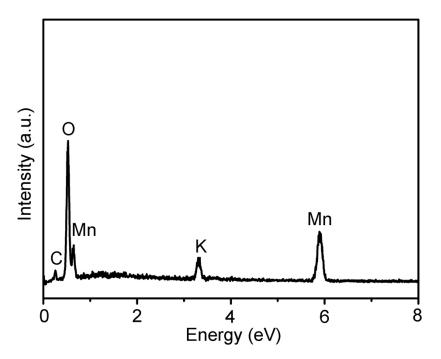


Fig. S1 EDS pattern taken from MnO₂ nanoflower-wires.

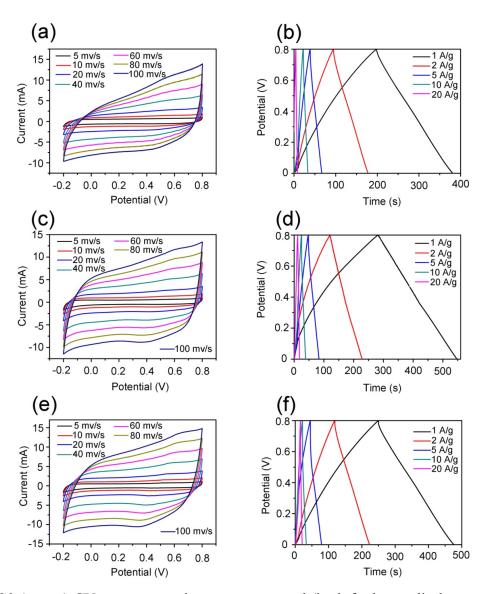


Fig. S2 (a, c, e) CV curves at various scan rates and (b, d, f) charge-discharge curves at different current densities of 0T nanoflowers, 0.3T nanoflower-needles and 0.6T nanoflower-wires MnO_2 electrodes, respectively.