Supporting Information

An alternative strategy to construct Fe(II)-based MOFs with multifarious structures and magnetic behaviors

Qipeng Li,^{a,b} Chongbin Tian,^a Huabin Zhang,^a Jinjie Qian,^{a,b} and Shaowu Du*a 5

^a State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China. E-mail: swdu@fjirsm.ac.cn. Fax: 86-591-83709470

^b University of the Chinese Academy of Sciences, Beijing, 100049, China

10

15

Table of Content

Section 1. Coordination modes	S2
Section 2. Crystallographic Data Tables	S3–S9
Section 3. Additional Structural Figures	S10-S13
20 Section 4. Powder X-ray Diffraction	S14
Section 5. Thermogravimetric Analysis	S15
Section 6. Magnetic Figures	S16-S22

1. Coordination modes

Scheme S1 The coordination modes of heterocyclic carboxylic acids in 1-6

2. Crystallographic Data Tables

Fe1—O7 ⁱ	2.0485 (13)	O8—Fe2 ⁱ	2.1653 (14)
Fe1—O5 ⁱⁱ	2.0955 (13)	O5—Fe1 ⁱⁱ	2.0955 (13)
Fe1—O2 ⁱⁱⁱ	2.1569 (14)	O7—Fe1 ⁱ	2.0485 (13)
Fe1—N2	2.1859 (17)	O3—Fe2 ^{iv}	2.0712 (13)
Fe1—N1	2.1883 (17)	Fe2—N4	2.1855 (17)
Fe1—O9	2.2220 (14)	Fe2—O9	2.2073 (14)
Fe2—O3 ^{iv}	2.0712 (13)	Fe2—N3	2.2312 (17)
Fe2—O1 ⁱⁱⁱ	2.0784 (13)	O1—Fe2 ⁱⁱⁱ	2.0784 (13)
Fe2—O8 ⁱ	2.1653 (14)	O2—Fe1 ⁱⁱⁱ	2.1569 (14)
O7 ⁱ —Fe1—O5 ⁱⁱ	179.46 (6)	Fe2—O9—Fe1	112.07 (6)
O7 ⁱ —Fe1—O2 ⁱⁱⁱ	94.12 (6)	O7 ⁱ —Fe1—N1	91.87 (6)
O5 ⁱⁱ —Fe1—O2 ⁱⁱⁱ	86.00 (6)	O5 ⁱⁱ —Fe1—N1	87.61 (6)
O7 ⁱ —Fe1—N2	89.48 (6)	O2 ⁱⁱⁱ —Fe1—N1	87.69 (6)
O5 ⁱⁱ —Fe1—N2	90.42 (6)	N2—Fe1—N1	94.41 (6)
O2 ⁱⁱⁱ —Fe1—N2	175.78 (6)	O7 ⁱ —Fe1—O9	91.53 (5)
O2 ⁱⁱⁱ —Fe1—O9	88.64 (5)	O5 ⁱⁱ —Fe1—O9	89.00 (5)
N2—Fe1—O9	89.06 (6)	O1 ⁱⁱⁱ —Fe2—N4	93.00 (6)
N1—Fe1—O9	175.17 (5)	O8 ⁱ —Fe2—N4	87.14 (6)
O3 ^{iv} —Fe2—O1 ⁱⁱⁱ	175.79 (6)	O3 ^{iv} —Fe2—O9	90.16 (5)
O3 ^{iv} —Fe2—O8 ⁱ	86.32 (6)	O1 ⁱⁱⁱ —Fe2—O9	88.54 (5)
O1 ⁱⁱⁱ —Fe2—O8 ⁱ	97.69 (6)	O8 ⁱ —Fe2—O9	90.21 (5)
O3 ^{iv} —Fe2—N4	88.48 (6)	N4—Fe2—O9	177.09 (5)
O9—Fe2—N3	90.94 (6)	O3 ^{iv} —Fe2—N3	88.63 (6)
C6-O1-Fe2 ⁱⁱⁱ	124.37 (12)	O1 ⁱⁱⁱ —Fe2—N3	87.38 (6)
C6—O2—Fe1 ⁱⁱⁱ	126.24 (12)	O8 ⁱ —Fe2—N3	174.83 (6)
C13—N3—Fe2	118.31 (13)	N4—Fe2—N3	91.59 (6)
Symmetry codes: (i) -	x-1, -y+1, -z-1; (ii) $-x$	x-1, -y+2, -z; (iii) $-x, -y+2,$	-z; (iv) $-x-1$, $-y+2$, $-z-1$.

Table S1 Selected bond lengths (Å) and angles (°) for 1

5

15

Table S2 Selected bond lengths (Å) and angles (°) for ${\bf 2}$

Fe1—O1 ⁱ	2.0339 (18)	O1—Fe1 ^v	2.0339 (18)
Fe1—O4 ⁱⁱ	2.0820 (18)	O1—Fe1 ⁱⁱⁱ	2.3313 (18)

Fe1—N1	2.128 (2)	O4—Fe1 ^{iv}	2.0820 (18)
Fe1—O6	2.1353 (19)	O3—Fe1 ^{iv}	2.3480 (18)
Fe1—O1 ⁱⁱⁱ	2.3313 (18)	Fe1—O3 ⁱⁱ	2.3480 (18)
O1 ⁱ —Fe1—O4 ⁱⁱ	159.21 (7)	C1—O1—Fe1 ^v	123.98 (14)
O1 ⁱ —Fe1—N1	106.51 (7)	C1-O1-Fe1 ⁱⁱⁱ	122.77 (14)
O4 ⁱⁱ —Fe1—N1	92.62 (7)	Fe1 ^v —O1—Fe1 ⁱⁱⁱ	102.96 (7)
O1 ⁱ —Fe1—O6	95.90 (7)	O1 ⁱ —Fe1—O1 ⁱⁱⁱ	77.04 (7)
O4 ⁱⁱ —Fe1—O6	90.85 (7)	O4 ⁱⁱ —Fe1—O1 ⁱⁱⁱ	93.88 (6)
N1—Fe1—O6	93.61 (8)	N1—Fe1—O1 ⁱⁱⁱ	94.02 (8)
O6—Fe1—O3 ⁱⁱ	89.59 (8)	O6—Fe1—O1 ⁱⁱⁱ	170.82 (6)
O1 ⁱⁱⁱ —Fe1—O3 ⁱⁱ	86.12 (7)	O1 ⁱ —Fe1—O3 ⁱⁱ	101.26 (7)
C8—O4—Fe1 ^{iv}	95.84 (13)	O4 ⁱⁱ —Fe1—O3 ⁱⁱ	59.04 (6)
C11—N1—C12	117.2 (2)	N1—Fe1—O3 ⁱⁱ	151.55 (7)
C11—N1—Fe1	121.24 (15)	O4—C8—O3	121.2 (2)
C12—N1—Fe1	121.19 (15)	C8—O3—Fe1 ^{iv}	83.63 (13)
Symmetry codes: (i) $x-1$, y y+1, $z+1$.	1, <i>z</i> −1; (ii) <i>x</i> −1, <i>y</i> , <i>z</i> −	1; (iii) $-x+2$, $-y+2$, $-z+1$; (iv) x	x+1, y, z+1; (v) x+1,

Fe1—O2 ⁱ	1.999 (2)	N2—Fe1 ⁱⁱⁱ	2.144 (2)
Fe1—O1 ⁱⁱ	2.047 (3)	O2—Fe1 ^{iv}	1.999 (2)
Fe1—O4	2.125 (2)	O1—Fe1 ⁱⁱ	2.047 (3)

Table S3 Selected bond lengths (Å) and angles (°) for ${\bf 3}$

Fe1—O5	2.141 (2)	Fe1—N2 ⁱⁱⁱ	2.144 (2)
O2 ⁱ —Fe1—O1 ⁱⁱ	145.32 (7)	O2 ⁱ —Fe1—N2 ⁱⁱⁱ	103.58 (9)
O2 ⁱ —Fe1—O4	87.67 (8)	O1 ⁱⁱ —Fe1—N2 ⁱⁱⁱ	110.88 (9)
O1 ⁱⁱ —Fe1—O4	86.30 (8)	O4—Fe1—N2 ⁱⁱⁱ	106.56 (8)
O2 ⁱ —Fe1—O5	92.98 (9)	O5—Fe1—N2 ⁱⁱⁱ	89.75 (8)
O1 ⁱⁱ —Fe1—O5	83.55 (9)	C8—O4—Fe1	134.36 (15)
O4—Fe1—O5	163.06 (7)	Fe1—O5—H5A	120.0
C7—N2—Fe1 ⁱⁱⁱ	116.88 (16)	Fe1—O5—H5B	120.0
C5—N2—Fe1 ⁱⁱⁱ	137.88 (16)	H5A—O5—H5B	120.0
C9—O1—Fe1 ⁱⁱ	134.90 (17)	C9—O2—Fe1 ^{iv}	131.62 (18)
Symmetry codes	: (i) x, y-1, z; (ii) -x-	+1, -y, -z+1; (iii) -x, -y, -z+1;	(iv) x, y+1, z.

Table S4 Selected bond lengths (Å) and angles (°) for 4 $\,$

Fe1—O2 ⁱ	2.051 (2)	O1—Fe1 ^{iv}	2.1145 (19)
Fe1—O3 ⁱⁱ	2.0897 (19)	O2—Fe1 ⁱ	2.051 (2)
Fe1—N1	2.102 (2)	O3—Fe1 ⁱⁱ	2.0897 (19)
Fe1—O1 ⁱⁱⁱ	2.1145 (19)	O3—Fe1 ^{iv}	2.1365 (19)
Fe1—O3 ⁱⁱⁱ	2.1365 (19)		
O2 ⁱ —Fe1—O3 ⁱⁱ	104.34 (8)	N1—Fe1—O1 ⁱⁱⁱ	91.88 (8)
O2 ⁱ —Fe1—N1	93.42 (8)	O2 ⁱ —Fe1—O3 ⁱⁱⁱ	88.78 (8)
O3 ⁱⁱ —Fe1—N1	102.39 (8)	O3 ⁱⁱ —Fe1—O3 ⁱⁱⁱ	119.68 (4)
O2 ⁱ —Fe1—O1 ⁱⁱⁱ	167.54 (8)	N1—Fe1—O3 ⁱⁱⁱ	135.89 (8)
O3 ⁱⁱ —Fe1—O1 ⁱⁱⁱ	85.48 (7)	O1 ⁱⁱⁱ —Fe1—O3 ⁱⁱⁱ	79.59 (7)
C10—O3—Fe1 ⁱⁱ	125.34 (16)	C9—O1—Fe1 ^{iv}	119.12 (16)
C10—O3—Fe1 ^{iv}	113.87 (15)	C9—O2—Fe1 ⁱ	117.54 (17)
Fe1 ⁱⁱ —O3—Fe1 ^{iv}	118.68 (8)	C2—N1—Fe1	131.88 (18)
C1—N1—Fe1	121.94 (19)		
Symmetry codes: (i) $-x+1$, $-y$	<i>y</i> , <i>-z</i> +2; (ii) <i>-x</i> +1, <i>-y</i> +1,	-z+2; (iii) $x+1/2$, $-y+1/2$, $z-1/2$;	(iv) $x - 1/2$, $-y + 1/2$, $z + 1/2$.

Table S5	Selected	bond leng	gths (Å) a	and angles	(°) for 5

Fe—O3 ⁱ	2.023 (2)	Fe—O2 ⁱⁱⁱ	2.280 (2)
Fe—O5	2.109 (3)	O2—Fe ⁱⁱⁱ	2.280 (2)
Fe—O6	2.145 (2)	O1—Fe ^{iv}	2.189 (2)
Fe—N	2.168 (2)	O3—Fe ^v	2.023 (2)
O3 ⁱ —Fe—O5	97.03 (10)	C3—N—Fe	119.78 (19)

O3 ⁱ —Fe—O6	171.22 (10)	C7—N—Fe	122.80 (18)
O5—Fe—O6	90.10 (10)	O3 ⁱ —Fe—N	96.32 (9)
O3 ⁱ —Fe—O2 ⁱⁱⁱ	90.57 (8)	O5—Fe—N	93.47 (11)
O5—Fe—O2 ⁱⁱⁱ	170.75 (9)	O6—Fe—N	88.33 (10)
O6—Fe—O2 ⁱⁱⁱ	81.89 (9)	O3 ⁱ —Fe—O1 ⁱⁱ	89.15 (9)
N—Fe—O2 ⁱⁱⁱ	90.92 (8)	O5—Fe—O1 ⁱⁱ	86.35 (10)
O1 ⁱⁱ —Fe—O2 ⁱⁱⁱ	88.50 (8)	O6—Fe—O1 ⁱⁱ	86.18 (9)
C1—O1—Fe ^{iv}	128.75 (19)	N—Fe—O1 ⁱⁱ	174.51 (7)
C1—O2—Fe ⁱⁱⁱ	123.13 (16)	H10B—O5—H10A	114 (5)
C2—O3—Fe ^v	141.11 (19)	Fe—O6—H9B	119 (4)
Fe—O5—H10B	126 (4)	Fe—O6—H9A	102 (3)
Fe—O5—H10A	116 (3)	H9B—O6—H9A	110 (5)
Symmetry codes:	(i) <i>x</i> -1, <i>y</i> , <i>z</i> ; (ii) <i>x</i> -1, <i>y</i> +1	, z; (iii) -x+2, -y, -z; (iv) x+1, y	−1, <i>z</i> ; (v) <i>x</i> +1, <i>y</i> , <i>z</i> .

10

15

_

 Table S6 Selected bond lengths (Å) and angles (°) for 6

Fe—O4 ⁱ	2.101 (2)	Fe—N	2.187 (2)	
Fe—O2 ⁱⁱ	2.1238 (19)	O4—Fe ^{iv}	2.101 (2)	
Fe—O3 ⁱ	2.126 (2)	O2—Fe ⁱⁱⁱ	2.1238 (19)	
Fe—O5	2.1367 (19)	O3—Fe ^{iv}	2.126 (2)	
Fe—O6	2.151 (2)			
O4 ⁱ —Fe—O2 ⁱⁱ	174.62 (7)	C5—N—Fe	123.92 (18)	
O4 ⁱ —Fe—O3 ⁱ	82.85 (8)	C4—N—Fe	118.38 (17)	
O2 ⁱⁱ —Fe—O3 ⁱ	96.97 (8)	O4 ⁱ —Fe—N	90.82 (8)	
O4 ⁱ —Fe—O5	94.68 (8)	O2 ⁱⁱ —Fe—N	94.52 (7)	
O2 ⁱⁱ —Fe—O5	79.99 (7)	O3 ⁱ —Fe—N	98.33 (8)	

O3 ⁱ —Fe—O5	82.29 (8)	O5—Fe—N	174.50 (8)		
O4 ⁱ —Fe—O6	83.64 (8)	O6—Fe—N	90.54 (8)		
O2 ⁱⁱ —Fe—O6	95.66 (8)	C7—O2—Fe ⁱⁱⁱ	119.64 (16)		
O3 ⁱ —Fe—O6	163.92 (8)	C7—O3—Fe ^{iv}	134.61 (18)		
O5—Fe—O6	90.17 (8)	C1—O4—Fe ^{iv}	123.08 (18)		
Symmetry codes: (i) $x, -y+3/2, z+1/2$; (ii) $-x+1, y-1/2, -z+3/2$; (iii) $-x+1, y+1/2, -z+3/2$; (iv) $x, -y+3/2$,					
<i>z</i> -1/2.					

Table S7 Bond lengths (Å) and angles (°) of hydrogen bonds for ${\bf 2}$

D-H···A	d(D-H)	$d(H \cdots A)$	$d(D \cdots A)$	∠(D-H…A)
O(5)-H(5B)····O(2)	0.90	2.14	2.987(4)	156
O(6)-H(6A)····O(5)	0.90	1.98	2.748(4)	142
O(6)-H(6B)····O(3)	0.90	1.96	2.777(3)	150
C(11)-H(18A)····O(3)	0.96	2.39	3.336(3)	167

D-H…A	d(D-H)	$d(\mathrm{H}^{\ldots}\mathrm{A})$	$d(D \cdots A)$	∠(D-H···A)
N(1)-H(1B)····O(3)	0.88	1.90	2.776(4)	175
O(5)-H(5B)····N(1)	0.95	2.35	3.277(4)	165
C(7)-H(7A)…O(3)	0.95	2.44	3.259(5)	144
C(7)-H(7B)····O(4)	0.95	2.31	3.212(5)	159

Table S8 Bond lengths (Å) and angles (°) of hydrogen bonds for 3

Table S9 Bond lengths (Å) and angles (°) of hydrogen bonds for 4

D-H…A	d(D-H)	d(H···A)	$d(D \cdots A)$	∠(D-H···A)
N(2)-H(2A)····O(4)	0.86	1.96	2.809(3)	169
C(1)-H(1)····O(4)	0.68(4)	2.52(4)	3.136(4)	152
C(4)-H(4)····O(2)	0.83(3)	2.38(3)	3.035(3)	137

10

15

Table S10 Bond lengths (Å) and angles (°) of hydrogen bonds for 5

D-H···A	d(D-H)	$d(H \cdots A)$	$d(D \cdots A)$	∠(D-H…A)
O(6)-H(9A)····O(2)	0.70(4)	2.02(4)	2.695(3)	163
O(6)-H(9B)…O(7)	0.63(5)	2.17(4)	2.801(4)	177
O(5)-H(10A)····O(7)	0.67(4)	2.16(4)	2.821(4)	172
O(5)-H(10B)····O(4)	0.71(5)	2.12(5)	2.789(4)	159

Table S11 Bond lengths (Å) and angles (°) of hydrogen bonds for 6

D-H···A	d(D-H)	d(H···A)	$d(D \cdots A)$	∠(D-H…A)
O(5)-H(5A)···O(1)	0.82	1.95	2.766(3)	171
O(5)-H(5C)···O(2)	0.90	2.14	2.759(3)	125
O(6)-H(6A)···O(1)	0.82	2.07	2.827(3)	154
O(6)-H(6B)…O(1)	0.90	2.48	2.980(3)	115
C(3)-H(3A)····O(4)	0.93	2.45	3.313(4)	155
C(4)-H(4A)····O(1)	0.93	2.53	3.320(4)	142
C(5)-H(5B)····O(3)	0.93	2.34	3.181(4)	150

10

15

3. Additional Structural Figures

Fig. S1 H-bonding interactions in the 3D supramolecular framework of 2

Fig. S2 The (3,6)-connected 2D framework with a kgd topology network in 2

Fig. S3 H-bonding interactions in the 3D supramolecular framework of 3

Fig. S4 H-bonding interactions in the 3D supramolecular framework of 4

Fig. S5 The (3,6)-connected 2D framework with a kgd topology network in 5

Fig. S6 H-bonding interactions in the 3D supramolecular framework of 5

Fig. S7 H-bonding interactions in the 3D supramolecular framework of 6

4. Powder X-ray Diffraction

Fig. S8 Simulated and experimental XRD powder patterns of 1-6

5. Thermogravimetric Analysis

Fig. S9 TG curves of compounds 1-6

6. Magnetic Figures

Fig. S10 The red line shows the Curie–Weiss fitting for 2

Fig. S11 The M vs. H plot for 2 measured at 2 K.

Fig. S12 The red line shows the Curie–Weiss fitting for 3

Fig. S13 The *M* vs. *H* plot for 3 measured at 2 K.

Fig. S14 The red line shows the Curie–Weiss fitting for 4

Fig. S15 The *M* vs. *H* plot for 4 measured at 2 K.

Fig. S16 The red line shows the Curie–Weiss fitting for 5

Fig. S17 The *M* vs. *H* plot for 5 measured at 2 K.

Fig. S18 The red line shows the Curie-Weiss fitting for 6

Fig. S19 The *M* vs. *H* plot for 6 measured at 2 K

Fig. S20 The red line shows the $\chi_m T$ and fitting for **5** and **6**

Fig. S21 (a) The *syn-anti* equatorial-axial configuration for 5. (b) The *syn-anti* the equatorialequatorial fashion for 6

Bridging mode	compounds	type	Fe-Fe Disatance/(Å)	∠Fe-O-Fe	g	<i>J</i> (cm ⁻¹)
	2	bis(µ2-OR)	3.42	102.96	2.09	0.33
Fe ^{to} of ^{fe} o	3	bis(syn-syn)	3.40		2.03	-0.72
	4	syn-anti/ µ2-OR	3.64	118.9	2.25	-2.76
	5	bis(syn-anti)	4.80		2.09	0.31
° + ° − Fe − ° +	6	bis(syn-anti)	4.70		2.01	0.85

Table S12 The exchange couplings of compounds 2-6