Precisely Controlled Supramolecular Ionic Conduction
 Paths and Their Structure-Conductivity Relationships for Lithium Ion Transport

Makoto Moriya, *a,b,ई Kuniyoshi Nomura, ${ }^{\text {a }}$ Wataru Sakamoto ${ }^{a}$ and Toshinobu Yogo ${ }^{a}$
${ }^{a}$ EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.E-mail: moriya@esi.nagoya-u.ac.jp
${ }^{b}$ Presto, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 3320012, Japan.
\neq Current address: Department of Chemistry, Graduate School of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan. E-mail: moriya.makoto@shizuoka.ac.jp

Table S1. Crystal data and structure refinement for 1.

Empirical formula	C18 H36 F12 Li2 N6 O8 S4
Formula weight	834.64
Temperature	153(2) K
Wavelength	0.71073 A
Crystal system	Triclinic
Space group	P-1
Unit cell dimensions	$a=8.4167(11) \AA \quad \alpha=83.969(3)^{\circ}$.
	$b=10.2057(14) \AA \quad \beta=78.625(2)^{\circ}$.
	$c=11.0501(15) \AA \quad \gamma=79.928(3)^{\circ}$.
Volume	913.7(2) \AA^{3}
Z	1
Density (calculated)	$1.517 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.367 \mathrm{~mm}^{-1}$
$F(000)$	428
Crystal size	$0.3 \times 0.2 \times 0.2 \mathrm{~mm}^{3}$
Theta range for data collection	1.88 to 28.34°.
Index ranges	$-10<=h<=11,-13<=k<=13,-14<=l<=13$
Reflections collected	6890
Independent reflections	$4489[R(\mathrm{int})=0.0181]$
Completeness to theta $=28.34^{\circ}$	98.5 \%
Absorption correction	Empirical
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	4489 / 0 / 230
Goodness-of-fit on F^{2}	1.048
Final R indices [$I>2 \operatorname{sigma}(I)$]	$R_{1}=0.0401, w R_{2}=0.1046$
R indices (all data)	$R_{1}=0.0447, w R_{2}=0.1084$
Largest diff. peak and hole	0.602 and -0.243 e. \AA^{-3}

Table S2. Crystal data and structure refinement for 2.

Empirical formula	C18 H36 F12 Li2 N6 O8 S4
Formula weight	834.64
Temperature	153(2) K
Wavelength	0.71073 A
Crystal system	Monoclinic
Space group	$P 2(1) / \mathrm{n}$
Unit cell dimensions	$a=12.4175(14) \AA$ A $\quad \alpha=90^{\circ}$.
	$b=9.8024(11) \AA \quad \beta=105.303(3)^{\circ}$.
	$c=15.7042(16) \AA \quad \gamma=90^{\circ}$.
Volume	1843.8(3) \AA^{3}
Z	2
Density (calculated)	$1.503 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.364 \mathrm{~mm}^{-1}$
$F(000)$	856
Crystal size	$0.3 \times 0.3 \times 0.3 \mathrm{~mm}^{3}$
Theta range for data collection	1.87 to 28.33°.
Index ranges	$-14<=h<=16,-13<=k<=10,-19<=l<=20$
Reflections collected	13525
Independent reflections	$4575[R(\mathrm{int})=0.0684]$
Completeness to theta $=28.33^{\circ}$	99.6 \%
Absorption correction	Empirical
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	4575 / 0 / 231
Goodness-of-fit on F^{2}	1.082
Final R indices [$1>2 \operatorname{sigma}(1)$]	$R_{1}=0.0876, w R_{2}=0.1839$
R indices (all data)	$R_{1}=0.1295, w R_{2}=0.2038$
Largest diff. peak and hole	0.908 and -0.431 e. \AA^{-3}

Table S3. Crystal data and structure refinement for 3.

Empirical formula	C24 H48 F12 Li2 N6 O8 S4
Formula weight	918.80
Temperature	123(2) K
Wavelength	0.71073 A
Crystal system	Monoclinic
Space group	P2(1)/n
Unit cell dimensions	$\mathrm{a}=11.964(3) \AA \quad \alpha=90^{\circ}$.
	$b=10.381(3) \AA \quad \beta=100.531(4)^{\circ}$.
	$c=16.974(4) \AA \quad \gamma=90^{\circ}$.
Volume	2072.6(9) \AA^{3}
Z	2
Density (calculated)	$1.472 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.331 \mathrm{~mm}^{-1}$
$F(000)$	952
Crystal size	$0.50 \times 0.40 \times 0.40 \mathrm{~mm}^{3}$
Theta range for data collection	1.93 to 27.50°.
Index ranges	$-15<=h<=15,-13<=k<=13,-15<=l<=22$
Reflections collected	14123
Independent reflections	4757 [$R(\mathrm{int}$) $=0.0237]$
Completeness to theta $=27.50^{\circ}$	99.9 \%
Absorption correction	Empirical
Max. and min. transmission	0.8789 and 0.8518
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	4757 / 0 / 257
Goodness-of-fit on F^{2}	1.016
Final R indices [$1>2 \operatorname{sigma}(1)$]	$R_{1}=0.0324, w R_{2}=0.0877$
R indices (all data)	$R_{1}=0.0362, w R_{2}=0.0910$
Largest diff. peak and hole	0.553 and -0.290 e. \AA^{-3}

Table S4. Crystal data and structure refinement for 5.

Empirical formula	C14 H32 F6 Li2 N4 O6 S2
Formula weight	544.44
Temperature	153(2) K
Wavelength	0.71073 £
Crystal system	Orthorhombic
Space group	Pccn
Unit cell dimensions	$a=12.2852(14) \AA$ A $\quad \alpha=90^{\circ}$.
	$b=13.5924(16) \AA \quad \beta=90^{\circ}$.
	$c=16.4701(19) \AA \quad \gamma=90^{\circ}$.
Volume	2750.3(6) \AA^{3}
Z	4
Density (calculated)	$1.315 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.266 \mathrm{~mm}^{-1}$
$F(000)$	1136
Crystal size	$0.20 \times 0.20 \times 0.20 \mathrm{~mm}^{3}$
Theta range for data collection	2.23 to 27.50°.
Index ranges	$-15<=h<=15,-17<=k<=16,-21<=l<=18$
Reflections collected	17947
Independent reflections	$3158[R(\mathrm{int})=0.0362]$
Completeness to theta $=27.50^{\circ}$	99.9 \%
Absorption correction	Empirical
Max. and min. transmission	0.9486 and 0.9486
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	3158 / 0 / 158
Goodness-of-fit on F^{2}	1.042
Final R indices [$1>2 \operatorname{sigma}(I)$]	$R_{1}=0.0732, w R_{2}=0.2063$
R indices (all data)	$R_{1}=0.0889, w R_{2}=0.2276$
Largest diff. peak and hole	0.605 and -0.347e. \AA^{-3}

Fig. S1. Crystal structure of 1 with labels (Li: yellow, C: gray, N: blue, O: red, F: green, S: dark yellow. Thermal ellipsoid is 40% probability. Hydrogen atoms are omitted for clarity.). The dimer in compound 1 lies about an inversion centre. The atoms in the asymmetric unit of the CIF are labelled as Li1 and any symmetry-related atoms are described as Li1 (i) for clarity.

Table S5. Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for 1.

Li1-O1(i)	$1.946(4)$	Li1-O4	$1.932(3)$	Li1-N2	$2.031(3)$
Li1-N3	$2.055(3)$				

O1(i)-Li1-O4	$110.51(14)$	O1(i)-Li1-N2	$111.37(14)$	O1(i)-Li1-N3	$108.73(14)$
O4-Li1-N2	$113.40(14)$	O4-Li1-N3	$109.29(14)$	N2-Li1-N3	$103.21(13)$

Fig. S2. Crystal structure of 2 with labels (Li: yellow, C: gray, N: blue, O: red, F: green, S: dark yellow. Thermal ellipsoid is 40% probability. Hydrogen atoms are omitted for clarity.). The dimer in compound 2 lies about an inversion centre. The atoms in the asymmetric unit of the CIF are labelled as Li1 and any symmetry-related atoms are described as Li1(i) for clarity.

Table S6. Selected bond distances $(\AA \AA)$ and angles $\left({ }^{\circ}\right)$ for 2.

Li1-O1	$2.257(8)$	Li1-O2(i)	$2.014(7)$	Li1-O3	$1.983(8)$
Li1-N2	$2.185(8)$	Li1-N3	$2.082(8)$		

O1-Li1-O2(i)	$88.2(3)$	O1-Li1-O3	$80.9(3)$	O1-Li1-N2	$174.2(4)$
O1-Li1-N3	$93.3(3)$	O2(i)-Li1-O3	$117.6(4)$	O2(i)-Li1-N2	$97.5(3)$
O2(i)-Li1-N3	$112.6(3)$	O3-Li1-N2	$95.2(3)$	O3-Li1-N3	$129.1(4)$
N2-Li1-N3	$85.8(3)$				

Fig. S3. Crystal structure of 3 with labels (Li: yellow, C: gray, N: blue, O: red, F: green, S: dark yellow. Thermal ellipsoid is 40% probability. Hydrogen atoms are omitted for clarity.). The dimer in compound 3 lies about an inversion centre. The atoms in the asymmetric unit of the CIF are labelled as Li1 and any symmetry-related atoms are described as Li1(i) for clarity.

Table S7. Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for 3.

Li1-O1	$2.015(2)$	Li1-O2(i)	$2.337(3)$	Li1-O3(i)	$1.976(2)$
Li1-N1	$2.161(3)$	Li1-N2	$2.122(3)$		

O1-Li1-O2(i)	$85.21(9)$	O1-Li1-O3(i)	$112.54(11)$	O1-Li1-N1	$96.99(10)$
O1-Li1-N2	$117.26(11)$	O2(i)-Li1-O3(i)	$80.58(8)$	O2(i)-Li1-N1	$177.10(12)$
O2(i)-Li1-N2	$90.64(9)$	O3(i)-Li1-N1	$100.24(11)$	O3(i)-Li1-N2	$128.39(12)$
N1-Li1-N2	$86.68(9)$				

Fig. S4. Crystal structure of 5 with labels (Li: yellow, C: gray, N: blue, O: red, F: green, S: dark yellow. Thermal ellipsoid is 40% probability. Hydrogen atoms are omitted for clarity.). The dimer in compound 5 lies about a twofold axis. The atoms in the asymmetric unit of the CIF are labelled as Li1 and any symmetry-related atoms are described as Li1(i) for clarity.

Table S8. Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for 5.

Li1-O1(i)	$1.894(5)$	Li1-O3	$1.897(5)$	Li1-N1	$2.081(5)$
Li1-N2	$2.085(6)$				

O1(i)-Li1-O3	$117.9(3)$	O1(i)-Li1-N1	$113.2(3)$	O1(i)-Li1-N2	$111.4(2)$
O3-Li1-N1	$110.9(2)$	O3-Li1-N2	$110.8(3)$	N1-Li1-N2	$89.0(2)$

Fig. S5. DSC curves of $\mathbf{1 , 2} 2$ and $\mathbf{3 .}$

Fig. S6. Cole-Cole plots of 1 measured at $60^{\circ} \mathrm{C}$ using lithium electrodes to evaluate t_{Li} value (Blue: Before dc measurement, Red: After dc measurement).

Fig. S7. Linear sweep voltammogram of 1.

