Supplementary material

A new heterometallic multiligand 3D coordination polymer: synthesis and structure of [Pb(OH)]_n[Ag(SCN)(CN)]_n.

Eliano Diana,*^aGiuliana Gervasio^a,Emanuele Priola^a and Elisabetta Bonometti^a

Figure S1. ORTEP plot (thermal ellipsoids at 50% of probability) of asymmetric unit with atom labeling.

Table S1. Crystal data and structure refinement for $[Pb(OH)]_n[Ag(SCN)(CN)]_n$.					
Empirical formula	C ₂ H Ag N ₂ O Pb S				
Formula weight	416.17				
Temperature	293(2) K				
Wavelength	0.71073 Å 0 0.71073 Å				
Crystal system, space group	orthorhombic, Pnma				
Unit cell dimensions .	a = 21.8268(5) Å				
	b = $3.9863(1)$ Å				
	c = 7.1628(2) Å				
Volume	623.22(3) Å ³				
Z, Calculated density	4, 4.435 g/cm ³				
Absorption coefficient	30.350 mm ⁻¹				
F(000)	720				
Crystal size	0.04 x 0.05 x 0.21 mm				
Theta range for data collection	3.40 to 32.67 deg.				
Limiting indices	-32<=h<=32, -5<=k<=6, -10<=l<=10				
Reflections collected / unique	12721 / 1241 [R(int) = 0.0547]				
Completeness to theta = 32.67	96.8 %				
Refinement method	Full-matrix least-squares on F ²				
Data / restraints / parameters	1241 / 1 / 53				
Goodness-of-fit on F2	1.092				
Final R indices [I>2 σ (I)]	R1 = 0.0245, WR2 = 0.0578				
R indices (all data)	R1 = 0.0302, wR2 = 0.0608				
Extinction coefficient	0.0019(2)				
Largest diff. peak and hole	1.370 and -1.638 e Å ³				

Table S2. Bond lengths [Å] and angles [deg]						
	Exper.	Computed				
Pb(1)-O(1)	2.390(4)	2.404				
Pb(1)-O(1)#1	2.419(3)	2.452				
Pb(1)-O(1)#2	2.419(3)	2.452				
Pb(1)-N(2)	2.639(7)	2.598				
Ag(1)-C(2)	2.118(8)	2.106				
Ag(1)-S(1)	2.6077(14)	2.643				
Ag(1)-S(1)#3	2.6077(14)	2.643				
Ag(1)-S(1)#4	2.712(2)	2.891				
S(1)-C(1)	1.654(8)	1.667				
S(1)-Ag(1)#5	2.6077(14)	2.643				
S(1)-Ag(1)#6	2.712(2)	2.891				
C(1)-N(1)	1.159(10)	1.168				
C(2)-N(2)	1.119(9)	1.162				
O(1)-Pb(1)#1	2.419(3)	2.452				
O(1)-Pb(1)#2	2.419(3)	2.452				
O(1)-H(1)	0.817(10)	0.968				
O(1)-Pb(1)-O(1)#1	71.35(12)	71.85				
O(1)-Pb(1)-O(1)#2	71.35(12)	71.85				
O(1)#1-Pb(1)-O(1)#2	110.99(19)	108.15				
O(1)-Pb(1)-N(2)	113.75(19)	109.20				
O(1)#1-Pb(1)-N(2)	72.59(13)	70.84				
O(1)#2-Pb(1)-N(2)	72.59(13)	70.84				
C(2)-Ag(1)-S(1)	124.05(8)	127.46				
C(2)-Ag(1)-S(1)#3	124.05(8)	127.46				
S(1)-Ag(1)-S(1)#3	99.70(7)	97.55				
C(2)-Ag(1)-S(1)#4	102.07(19)	102.27				
S(1)-Ag(1)-S(1)#4	101.28(4)	100.10				

S(1)#3-Ag(1)-S(1)#4	101.28(4)	100.10
C(1)-S(1)-Ag(1)	103.75(16)	102.27

Figure S2. XRPD patterns for compounds **1** (black, experimental; red, simulated) and of Pb(OH)(NCS) (blue, simulated)

Fig.	S3 Raman s	pectra of cry	vstalline 1	compared	with spectra	of Pb(SCN	D_2 and	Ag(SCN)	
0'		p					.)2		

computed frequency		computed intensities	assignment	Infrared (exp.)	raman (exp.)	
3782	(B _{1u})	(407.14)	ν(О-Н)			
3782	(B _{3g})	(0.00)	ν(О-Н)		3563 vw	
3782	(B _{2u})	(314.26)	ν(О-Н)	- 3557 s		
3781	(A _g)	(0.00)	v(O-H)			
2236	(B _{1u})	(186.97)	v(CN)			
2236	(A _g)	(0.00)	v(CN)	2111	0.100	
2235	(B _{3g})	(0.00)	v(CN)	2111 VS	2122 vs	
2232	(B _{2u})	(572.95)	v(CN)			
2201	(B _{3g})	(0.00)	vS(CN)			
2190	(A _g)	(0.00)	vS(CN)	2005	2092 s	
2190	(B _{1u})	(755.04)	vS(CN)	2085 VS		
2189	(B _{2u})	(2714.73)	vS(CN)			
793,0	(B _{3g})	(0.00)	ρ(OH)			
792,5	(A _g)	(0.00)	ρ(OH)	740 w	750 m	
790,6	(B _{1u})	(417.32)	ρ(ΟΗ)			
789,0	(B _{2u})	(156.33)	ρ(OH)			
743,0	$(A_g))$	(0.00)	v(SC)N			
742,0	(B _{1u})	(0.07)	v(SC)N	726	735	
740,3	(B _{2u})	(38.67)	v(SC)N	/26 m	735 W	
740,0	(B _{3g})	(0.00)	v(SC)N			
708,8	(B _{2g})	(0.00)	δ(OH)	682 w		

708,8	(B _{1g})	(0.00)	δ(ОН)	648 w	
705,2	(B _{3u})	(1054.99)	δ(ОН)		
705,1	(A_u)	(0.00)	δ(ОН)		
466,3	(B _{3u})	(45.33)	δ(SCN)		
466,2	(B _{2g})	(0.00)	δ(SCN)		
465,4	(A _u)	(0.00)	δ(SCN)		
465,4	(B _{1g})	(0.00)	δ(SCN)	480 m	460 m
459,9	(B _{1u})	(30.22)	δ(SCN)	448 m	490 m
459,5	(A _g)	(0.00)	δ(SCN)		
458,0	(B _{2u})	(13.31)	δ(SCN)		
457,7	(B _{3g})	(0.00)	δ(SCN)		
401,5	(B _{1u})	(9.53)	v(Ag-CN-Pb)		
384,5	(B _{2u})	(508.38)	v(Ag-CN-Pb)		
378,3	(A _g)	(0.00)	v(Ag-CN-Pb)	380 m	380 m
377,7	(B _{3g})	(0.00)	v(Ag-CN-Pb)	364 m	345 m-w
349,6	(A _g)	(0.00)	v(Ag-CN-Pb)		
349,2	(B _{3g})	(0.00)	v(Ag-CN-Pb)		
331,2	(B _{1u})	(52.84)	v(O-Pb)		
329,9	(B _{1g})	(0.00)	v(O-Pb)		
329,8	(B _{2g})	(0.00)	v(O-Pb)		
325,9	(B _{2u})	(170.32)	v(O-Pb)		
317,3	(B _{1u})	(451.73)	v(O-Pb)	310 m	2 01
315,9	(B _{2u})	(55.61)	v(O-Pb)	292 m	294 w
281,9	(A _u)	(0.00)	v(O-Pb)		
281,6	(B _{3u})	(410.41)	v(O-Pb)		
276,8	(B _{3g})	(0.00)	v(O-Pb)		
276,7	(A _g)	(0.00)	v(O-Pb)		
251,5	(B _{3g})	(0.00)	δ(CN)		
248,5	(A _g)	(0.00)	δ(CN)		
246,4	(B _{1g})	(0.00)	δ(CN)		
245,2	(B _{2g})	(0.00)	δ(CN)	226	
240,9	(B _{2u})	(4.23)	δ(CN)	— 236 m	
237,2	(B _{1u})	(82.30)	δ(CN)		
233,1	(A_u)	(0.00)	δ(CN)		
232,3	(B _{3u})	(103.11)	δ(CN)		
197,3	(B _{3g})	(0.00)	v(S-Ag)		
192,4	(B _{2u})	(30.98)	v(S-Ag)		
179,7	(A _g)	(0.00)	v(S-Ag)		
171,1	(B _{1g})	(0.00)	v(S-Ag)		
170,8	(B _{1u})	(0.14)	v(S-Ag)		
168,4	(B _{3g})	(0.00)	v(S-Ag)		
163,8	(B _{2g})	(0.00)			
161,1	(A _g)	(0.00)			
159,0	(A _u)	(0.00)	v(S-Ag)		
142,4	(B _{1u})	(30.47)	v(S-Ag)		147 s (sh)
142,1	(B _{2u})	(3.70)	v(S-Ag)		

139,5	(B _{3u})	(70.97)		
137,3	(B _{3g})	(0.00)		
137,2	(A _g)	(0.00)		
132,8	(B _{1g})	(0.00)		
126,9	(B _{3g})	(0.00)		
124,2	(B _{2u})	(14.67)		
123,3	(B _{2g})	(0.00)		
122,9	(B _{1u})	(179.53)		
118,7	(B _{3u})	(159.11)		
116,2	(B _{2u})	(75.71)		
113,5	(A_u)	(0.00)		
113,3	(B _{3g})	(0.00)		
113,0	(A _g)	(0.00)		
99,72	(B_{1u})	(293.21)		
97,75	(B_{1g})	(0.00)		
95,04	(A _g)	(0.00)		
90,64	(A_u)	(0.00)		
89,90	(A _g)	(0.00)		
88,46	(B _{2g})	(0.00)		
81,26	(B_{1u})	(0.00)		
78,80	(B _{3u})	(697.40)		
78,65	(B _{2u})	(120.32)		
77,43	(B _{3g})	(0.00)		
61,30	(B _{1g})	(0.00)		
61,27	(B _{2g})	(0.00)		
57,31	(B _{2u})	(1.21)		
53,98	(B _{3g})	(0.00)		
53,46	(B_{1u})	(4.83)		
49,86	(B _{3g})	(0.00)		
42,90	(A _g)	(0.00)		
37,31	(B _{1u})	(0.36)		
36,60	(A _g)	(0.00)		
26,48	(B _{3u})	(2.75)		
25,30	(B _{2u})	(0.26)		
21,47	(A _u)	(0.00)		
20,41	(B _{1g})	(0.00)		
19,98	(B _{2g})	(0.00)		
18,74	(A_u)	(0.00)		

Figure S5: the Brillouin zone of **1**.