Template-free and non-hydrothermal synthesis of CeO₂

nanosheets via a facile aqueous-phase precipitation route and

catalytic oxidation properties

Qiguang Dai^a*, Shuxing Bai^a, Hua Li^b, Wei Liu^b, Xingyi Wang^a*, Guanzhong Lu^a ^a Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai 200237, PR China ^b Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai 201800, China Fax: (+86) + 21 64253372

E-mail: daiqg@ecust.edu.cn (Q. Dai); wangxy@ecust.edu.cn (X. Wang)

ABSTRACT

Two types of CeO₂ nanosheets, petal-like and belt-like, were synthesized via a facile aqueous phase precipitation method and NH₄HCO₃ as precipitant at 0 °C and 25 °C, without hydrothermal or solvothermal treatment, without template or surfactant and without organic solvent. The reaction temperature and supersaturation played key roles in the formation of ceria nanosheets, namely, lower temperature and higher supersaturation were favorable to the synthesis of sheet-like CeO₂ by oriented aggregation of CeO₂ nanocrystallines, while the elevated temperature could cause the dissolution-recrystallization of precursors and then formed polyhedral CeO₂ by Ostwald ripening process. Besides, the doping of heteroatoms was easy due to only adopting co-precipitation reaction, which could further extend the scope of application of CeO₂ nanosheets. Catalytic oxidation properties were investigated via catalytic oxidation of CO over CeO₂ and catalytic combustion of 1,2-dichloroethane over VOx/CeO₂. Compared with traditional CeO₂ nanoparticles, the ceria nanosheets showed more excellent catalytic oxidation activities.

KEYWORDS: CeO₂, nanosheets, catalytic oxidation, carbon monoxide, 1,2-dichloroethane, vanadia

Effect of aging temperature

Fig.S1 Detail SEM of synthesized CeO₂ at different temperature

0°C,15h

25°C,15h

75°C,15h, under reflux condition

100°C,15h,under reflux condition

150°C,15h, under hydrothermal conditions

Fig.S2 Detail XRD of as-synthesized CeO₂ (Precursor)

XRD pattern of as-synthesized precursor at 25°C Cerium Carbonate Hydrate (Ce₂(CO₃)₃•8 H₂O, JCPDS 38-377)

XRD pattern of as-synthesized precursor at 50°C Orthorhombic Cerium Carbonate Hydrate (Ce₂(CO₃)₃•6 H₂O, JCPDS 30-295)

XRD pattern of as-synthesized precursor at 100°C orthorhombic CeOHCO₃ (JCPDS 41-13)

Card Information

Names:	Cerium Carbonate	Hydroxide
Formula:	Ce C 03 0 H	
PDF Number:	41-13	
Quality:	indexed	
Subfiles:	inorganic	

Cell and Symmetry Information

System:	orthorhom	nbic	Space Group	: (no.	0)	
a:	5.015	b:	8.565	c:		7.337
Density (Dx):	4.545	Z:	4			

XRD pattern of as-synthesized precursor at 150°C Hexagonal CeOHCO₃ (JCPDS 32-189) +CeO₂ (JCPDS 34-0394)

XRD pattern of as-synthesized precursors hydrothermally treated at 150 $^\circ C$ and 170 $^\circ C$

XRD pattern of as-synthesized precursor (CeO₂-SC) Orthorhombic Cerium Carbonate Hydrate (Ce₂(CO₃)₃•6 H₂O, JCPDS 30-295)

Card Information

Names:	Cerium Carbonate Hydrate			
	Lanthanite-(Ce), syn			
Formula:	Ce ₂ (C 0 ₃) ₃ 1 ₆ H ₂ 0			
PDF Number:	30-295			
Quality:	questionable			
Subfiles:	inorganic mineral			

Cell and Symmetry Information

System:	orthorhombic		Space Group:	Pbnb	(no.	56)
a:	9.470	b:	16.902	c:		8.929
Z:	4					

Effect of precipitant (at 0°C)

Fig.S3 Detail SEM of synthesized CeO₂ using different precipitants Aqueous ammonia (CeO₂-AA)

Sodium bicarbonate (CeO₂-SB)

Ammonium carbonate (CeO₂-AC)

Sodium carbonate (CeO₂-SC)

Effect of aging time (at 0°C)

Fig.S4 Detail SEM of synthesized CeO₂ at different aging time

no aging

Thickness: 30-40nm

aging for 15h

Thickness: 40-70nm

aging for 24h

Thickness: 30-50nm

aging for 48h

Thickness: 70-100nm

Effect of water content (aging for 24 h at 0°C)

Fig.S5 Detail SEM of synthesized CeO₂ at different water content

petal-like CeO₂ nanosheets

50ml water (1.39 g cerium (III) nitrate hexahydrate (Ce(NO₃)₃•6H₂O) and 0.75 g ammonium bicarbonate (NH₄HCO₃) were dissolved in 25 ml deionized water at 0 °C under magnetic stirring, respectively.)

100ml water (1.39 g cerium (III) nitrate hexahydrate (Ce(NO₃)₃•6H₂O) and 0.75 g ammonium bicarbonate (NH₄HCO₃) were dissolved in 50 ml deionized water at 0 °C under magnetic stirring, respectively.)

belt-like CeO2 nanosheets

100ml water (1.39 g cerium (III) nitrate hexahydrate (Ce(NO₃)₃•6H₂O) and 0.75 g

ammonium bicarbonate (NH₄HCO₃) were dissolved in 50 ml deionized water at 25 $^{\circ}$ C under magnetic stirring, respectively.)

50ml water (1.39 g cerium (III) nitrate hexahydrate (Ce(NO₃)₃•6H₂O) and 0.75 g

ammonium bicarbonate (NH₄HCO₃) were dissolved in 50 ml deionized water at 25° C under magnetic stirring, respectively.)

Effect of adding way (aging for 24 h at 0°C)

Fig.S6 Detail SEM of synthesized CeO₂ at dropping way

1.39 g cerium (III) nitrate hexahydrate (Ce(NO₃)₃•6H₂O) and 0.75 g ammonium bicarbonate (NH₄HCO₃) were dissolved in 200 ml deionized water at 0 °C under magnetic stirring, respectively. The NH₄HCO₃ solution was slowly dropped into the Ce(NO₃)₃ solution at ratio of 2.5ml/min.

Fig.S7 XRD and IR of as-synthesized precursors by dropping way

Orthorhombic Cerium Carbonate Hydrate (Ce₂(CO₃)₃•8 H₂O, JCPDS 38-377)

Card Information

Names:Cerium Carbonate Hydrate
Lanthanite-(Ce)Formula:Ce2 (C03)3 !8 H2 0PDF Number:38-377Quality:indexedSubfiles:inorganic mineral

Cell and Symmetry Information

System:	orthorhombic		Space Group:	Pbnb	(no.	no. 56)	
a:	9.482	b:	16.938	c:		8.965	
Density (Dm):	2.760	Density (Dx)	:	2.790		Z:	
Instrument Infor	mation						
Radiation:	CuKa	Wavelength:	1.5418	Filter:		Ni	
Instrument (d):	Debye-Sch	errer					
Instrument (I):	densitome	ter	I type:	unknown			

2.....

Fig. S8 SEM images of the CeO₂ particles prepared by thermal decomposition method (CeO₂-TD)

