Supplementary materials

UO₂²⁺-amino hybrid materials: Structural variation and photocatalysis properties

Xue-Ting Xu¹, Ya-Nan Hou¹, Si-Yue Wei¹, Xiao-Xi Zhang¹, Feng-Ying Bai², Li-Xian

Sun³, Zhan Shi⁴, Yong-Heng Xing^{1*}

¹College of Chemistry and Chemical engineering, Liaoning Normal University, Huanghe Road 850[#], Dalian City,

116029, P.R. China.

² College of Life Science, Liaoning Normal University, Dalian 11602, P.R. China

³ Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004,

P.R. China

⁴ State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University,

Changchun 130012, P.R. China

*e-mail: xingyongheng2000@163.com tel: 0411-82156987

Table S1 the selected bond lengths (Å) and angles (°) of complex 1

	Tuble ST the	selected solid length	(iii) and angles		
U2-01	1.795(14)	U2-O2	1.786(14)	U1–O3	1.794(13)
U1-04	1.771(14)	U2-O5	2.401(11)	U2 ^{#1} -O6	2.258(10)
U2-O6	2.296(11)	U2-O10	2.492(13)	U2-O6 ^{#1}	2.258(10)
U2-O9 ^{#1}	2.373(15)	U2 ^{#1} -O9	2.373(14)	U1-O5	2.323(11)
U1-O6	2.236(11)	U1-O8	2.373(15)	U1-O7 ^{#2}	2.479(11)
U1-N1 ^{#2}	2.596(15)	U1 ^{#2} -N1	2.596(14)	U1 ^{#2} -O7	2.479(11)
U1-O5-U2	106.2(4)	U1-O6-U2 ^{#1}	138.3(5)	U1-O6-U2	112.9(4)
U2 ^{#1} -O6-U2	108.4(5)	C1-O8-U1	139.7(13)	C3-O10-U2	144.8(13)
O4-U1-O3	174.0(6)	O4-U1-O6	92.6(6)	O3-U1-O6	93.3(5)
O4-U1-O5	93.6(6)	O3-U1-O5	89.2(6)	O6-U1-O5	71.4(4)
O4-U1-O8	90.6(7)	O3-U1-O8	88.6(7)	O6-U1-O8	88.1(5)
O5-U1-O8	159.3(5)	O4-U1-O7 ^{#2}	89.2(6)	O3-U1-O7 ^{#2}	86.6(5)
O6-U1-O7 ^{#2}	143.3(4)	O5-U1-O7 ^{#2}	71.9(4)	O8-U1-O7 ^{#2}	128.5(5)
O4-U1-N1#2	82.5(6)	O3-U1-N1 ^{#2}	91.7(6)	O6-U1-N1#2	154.4(4)
O5-U1-N1#2	133.8(4)	O8-U1-N1 ^{#2}	66.9 (5)	O7#2-U1-N1#2	62.1(4)
O2-U2-O1	176.3(6)	O2-U2-O6#1	91.8(5)	O1-U2-O6 ^{#1}	91.4(5)
O2-U2-O6	90.7(6)	O1-U2-O6	92.1(5)	O6 ^{#1} -U2-O6	71.6(5)
O2-U2-O9 ^{#1}	91.2(8)	O1-U2-O9 ^{#1}	87.5(8)	O6 ^{#1} -U2-O9 ^{#1}	80.4(5)
O6-U2-O9 ^{#1}	152.0(5)	O2-U2-O5	88.8(6)	O1-U2-O5	89.9(5)
O6 ^{#1} -U2-O5	140.6(4)	O6-U2-O5	69.0(4)	O9 ^{#1} -U2-O5	139.0(5)
O2-U2-O10	87.2(6)	O1-U2-O10	89.1(6)	O6 ^{#1} -U2-O10	149.6(4)
O6-U2-O10	138.7(4)	O9#1-U2-O10	69.3(5)	O5-U2-O10	69.7(4)
O2-U2-U2 ^{#1}	91.6(4)	O1-U2-U2 ^{#1}	92.1(4)	O9 ^{#1} -U2-U2 ^{#1}	116.5(4)
O5-U2-U2 ^{#1}	104.5(3)	O10-U2-U2#1	174.1(3)	C4-N1-U1 ^{#2}	119.1(11)
C1-O9-U2#1	154.2(15)	C3-O7-U1 ^{#2}	128.7(12)		

Symmetry transformation used to generate equivalent atoms :#1:-x,-y+2,-z+2; #2:-x+1/2,-y+3/2,-z+2

Table S2 the selected bond lengths (Å) and angles (°) of complex 2	
--	--

	e	U	, I	
1.781(13)	U2–O2	1.778(12)	U1–O3	1.796(12)
1.788(12)	U2-O5	2.336(12)	U2-O5#1	2.373(12)
2.463(10)	U2-O6	2.474(11)	U1-O6 ^{#2}	2.477(10)
2.247(10)	U1-07	2.270(10)	U1-O7#4	2.292(11)
2.474(11)	U1-09	2.368(12)	U2-O7 ^{#5}	2.247(10)
115.3(5)	U1-O6-U2	132.2(4)	U1-O6-U1 ^{#2}	110.2(4)
98.8(4)	U2 ^{#3} -O7-U1	141.1(5)	U2 ^{#3} -O7-U1 ^{#4}	111.8(4)
107.1(4)	C1-O8-U2	139.8(11)	C1-O9-U1	143.3(12)
176.5(5)	O4-U1-O7	89.9(4)	O3-U1-O7	92.7(4)
92.9(5)	O3-U1-O7 ^{#4}	90.1(4)	O7-U1-O7 ^{#4}	70.3(4)
93.7(5)	O3-U1-O9	84.5(4)	O7-U1-O9	79.5(4)
149.0(4)	O4-U1-O6	83.8(4)	O3-U1-O6	92.9(4)
150.6(4)	O7#4-U1-O6	138.5(3)	O9-U1-O6	72.3(4)
	$\begin{array}{c} 1.781(13) \\ 1.788(12) \\ 2.463(10) \\ 2.247(10) \\ 2.247(10) \\ 2.474(11) \\ 115.3(5) \\ 98.8(4) \\ 107.1(4) \\ 176.5(5) \\ 92.9(5) \\ 93.7(5) \\ 149.0(4) \\ 150.6(4) \end{array}$	$1.781(13)$ $U2-O2$ $1.781(13)$ $U2-O2$ $1.788(12)$ $U2-O5$ $2.463(10)$ $U2-O6$ $2.247(10)$ $U1-O7$ $2.474(11)$ $U1-O7$ $2.474(11)$ $U1-O9$ $115.3(5)$ $U1-O6-U2$ $98.8(4)$ $U2^{\#3}-O7-U1$ $107.1(4)$ $C1-O8-U2$ $176.5(5)$ $O4-U1-O7$ $92.9(5)$ $O3-U1-O7^{\#4}$ $93.7(5)$ $O3-U1-O9$ $149.0(4)$ $O4-U1-O6$ $150.6(4)$ $O7^{\#4}-U1-O6$	$1.781(13)$ $U2-O2$ $1.778(12)$ $1.788(12)$ $U2-O5$ $2.336(12)$ $2.463(10)$ $U2-O6$ $2.474(11)$ $2.247(10)$ $U1-O7$ $2.270(10)$ $2.474(11)$ $U1-O9$ $2.368(12)$ $115.3(5)$ $U1-O6-U2$ $132.2(4)$ $98.8(4)$ $U2^{\#3}-O7-U1$ $141.1(5)$ $107.1(4)$ $C1-O8-U2$ $139.8(11)$ $176.5(5)$ $O4-U1-O7$ $89.9(4)$ $92.9(5)$ $O3-U1-O7^{\#4}$ $90.1(4)$ $93.7(5)$ $O3-U1-O9$ $84.5(4)$ $149.0(4)$ $O4-U1-O6$ $83.8(4)$	$1.781(13)$ $U2-O2$ $1.778(12)$ $U1-O3$ $1.781(13)$ $U2-O5$ $2.336(12)$ $U2-O5^{\#1}$ $2.463(10)$ $U2-O6$ $2.474(11)$ $U1-O6^{\#2}$ $2.247(10)$ $U1-O7$ $2.270(10)$ $U1-O7^{\#4}$ $2.474(11)$ $U1-O9$ $2.368(12)$ $U2-O7^{\#5}$ $115.3(5)$ $U1-O6-U2$ $132.2(4)$ $U1-O6-U1^{\#2}$ $98.8(4)$ $U2^{\#3}-O7-U1$ $141.1(5)$ $U2^{\#3}-O7-U1^{\#4}$ $107.1(4)$ $C1-O8-U2$ $139.8(11)$ $C1-O9-U1$ $176.5(5)$ $O4-U1-O7$ $89.9(4)$ $O3-U1-O7$ $92.9(5)$ $O3-U1-O7^{\#4}$ $90.1(4)$ $O7-U1-O7^{\#4}$ $93.7(5)$ $O3-U1-O9$ $84.5(4)$ $O3-U1-O6$ $149.0(4)$ $O4-U1-O6$ $83.8(4)$ $O3-U1-O6$

O4-U1-O6 ^{#2}	94.8(4)	O3-U1-O6 ^{#2}	84.7(4)	O7-U1-O6 ^{#2}	140.6(4)
O7#4-U1-O6#2	70.5(3)	O9-U1-O6 ^{#2}	138.8(4)	O6-U1-O6 ^{#2}	68.7(4)
O2-U2-O1	175.8(6)	O2-U2-O7 ^{#5}	91.7(5)	O1-U2-O7 ^{#5}	90.4(5)
O2-U2-O5	88.3(5)	O1-U2-O5	95.7(6)	O7 ^{#5} -U2-O5	80.6(4)
O2-U2-O5 ^{#1}	89.5(5)	O1-U2-O5#1	90.8(5)	O7 ^{#5} -U2-O5 ^{#1}	145.2(4)
O5-U2-O5 ^{#1}	64.7(5)	O2-U2-O6	84.0(5)	O1-U2-O6	93.2(5)
O7 ^{#5} -U2-O6	51.7(3)	O5-U2-O6	150.5(4)	O5 ^{#1} -U2-O6	143.3(4)
O2-U2-O8	95.3(5)	O1-U2-O8	80.9(5)	O7 ^{#5} -U2-O8	145.4(4)
O5-U2-O8	133.3(4)	O5 ^{#1} -U2-O8	68.8(4)	O6-U2-O8	75.9(4)

Symmetry transformation used to generate equivalent atoms :#1: -x+2,-y+2,-z+1; #2:-x+1,y,-z+1/2 ; #3: x-1,y,z; #4 -x,y,-z+1/2; #5 x+1, y, z

	Table S3 the selected bond lengths (A) and angles (°) of complex 3						
U1–O2	1.763(5)	U101	1.769(5)	U1–O3	2.273(6)		
U1-O3#1	2.291(6)	U1-O4	2.468(4)	U1–O5	2.484(4)		
U1-N1	2.612(4)	U1-N2	2.654(5)	C1-N1	1.336(8)		
C5-N1	1.348(7)	C6-N2	1.355(7)	C10-N2	1.350(7)		
C11–O5	1.244(7)	C11–O4	1.253(7)	O3–U1 ^{#1}	2.291(6)		
O2-U1-O1	174.7(3)	O2-U1-O3	90.5(4)	01-U1-O3	94.9(4)		
O2-U1-O3 ^{#1}	91.2(4)	O1-U1-O3 ^{#1}	93.2(4)	O2-U1-O4	90.48(19)		
O1-U1-O4	86.7(2)	O3-U1-O4	120.6(16)	O3 ^{#1} -U1-O4	157.13(17)		
O2-U1-O5	90.2(2)	O1-U1-O5	91.6(2)	O3-U1-O5	69.04(17)		
O3 ^{#1} -U1-O5	105.6(18)	O4-U1-O5	51.58(15)	O2-U1-N1	96.15(17)		
01-U1-N1	82.37(18)	O3-U1-N1	107.61(17)	O3 ^{#1} -U1-N1	71.19(18)		
O4-U1-N1	131.24(14)	O5-U1-N1	172.92(17)	O2-U1-N2	80.7(2)		
O1-U1-N2	94.1(2)	O3-U1-N2	165.0(2)	O3 ^{#1} -U1-N2	130.79(17)		
O4-U1-N2	71.94(13)	O5-U1-N2	122.73(14)	N1-U1-N2	61.75(14)		
O3 ^{#1} -O3-U1	72.4(5)	O3 ^{#1} -O3-U1 ^{#1}	71.0(5)	U1-O3-U1 ^{#1}	143.4(3)		
C11-O4-U1	94.8(3)	C11-O5-U1	94.3(4)	C1-N1-C5	117.8(5)		
C1-N1-U1	119.3(4)	C5-N1-U1	122.6(4)	C10-N2-C6	117.9(5)		
C10-N2-U1	120.5(4)	C6-N2-U1	120.5(4)				

Å

Symmetry transformations used to generate equivalent atoms: #1 -x,-y,-z+1

Table S4 the selected bond lengths (Å) and angles (°) of complex 4

	Table 54 the selected bond lengths (1) and angles (1) of complex 4					
U1-O2	1.755(3)	U1-O1	1.760(3)	U1-O3	2.437(3)	
U1-O5	2.445(3)	U1-O6	2.457(3)	U1-O4	2.472(3)	
U1-N1	2.632(4)	U1-N2	2.643(4)			
O2-U1-O1	179.08(15)	O2-U1-O3	89.03(14)	O1-U1-O3	90.26(14)	
O2-U1-O5	92.23(13)	01-U1-O5	88.03(13)	O3-U1-O5	67.09(12)	
O2-U1-O6	83.88(14)	01-U1-O6	96.97(14)	O3-U1-O6	118.69(11)	
O5-U1-O6	52.55(11)	O2-U1-O4	94.30(14)	01-U1-O4	84.81(14)	
O3-U1-O4	52.62(10)	O5-U1-O4	119.12(11)	O6-U1-O4	171.24(10)	

O2-U1-N1	103.57(13)	01-U1-N1	77.10(13)	O3-U1-N1	166.82(12)
O5-U1-N1	115.46(12)	O6-U1-N1	67.36(11)	O4-U1-N1	121.35(11)
O2-U1-N2	77.47(12)	01-U1-N2	102.39(12)	O3-U1-N2	119.69(12)
O5-U1-N2	167.14(12)	O6-U1-N2	117.77(11)	O4-U1-N2	69.95(11)

Table S5 Bond Distances (Å) and Angles (°) of Hydrogen Bonds in Complexes 1-4*

D-H…A	d (D-H) Å	d (H…A) Å	d (D…A) Å	∠DHA(°)		
		Complex 1				
N1-H1A…O3 ^{#1}	0.90	2.20	3.031(2)	153		
N2-H2D…O1#2	0.86	2.00	2.820(3)	158		
C7-H7···O2 ^{#3}	0.93	2.28	2.998(16)	134		
		Complex 2				
N1-H1B…O3 ^{#4}	0.86	2.29	2.979(18)	137		
O2W-H2WA···O4 ^{#5}	0.90	2.03	2.918(16)	169		
O2W-H2WB····O4 ^{#6}	0.90	2.09	2.918(16)	152		
C2-H2B…O1 ^{#7}	0.97	2.45	3.226(11)	137		
C2-H2B···O9 ^{#8}	0.97	2.39	3.192(11)	140		
O1W-H1WA…N1	0.90	2.09	2.819(19)	137		
Complex 3						
C1-H1…O5 ^{#9}	0.93	2.57	3.283(2)	134		
C2-H2···O1 ^{#10}	0.93	2.47	3.399(2)	176		
Complex 4						
C14-H14C…O2 ^{#11}	0.96	2.42	3.378(18)	174		

*Symmetry transformation used to generate equivalent atoms: #1: x+1/2, y+1/2, z; #2: 3/2-x, 3/2-y, 1-z; #3: 3/2-x, 1/2+y, 1/2-z; #4: 1/2-x, 3/2-y, 1-z; #5: x+1, y-1, z; #6: 1-x, y-1, 1/2-z; #7: 3/2-x, 1/2-y, -z; #8: 5/2-x, 1/2-y, -z; #9: - x, 1-y, -z: #10: x-1/2, 1/2-y, -z; #11: x+1/2, 1/2-y, 1/2+z.

Fig. S1 The IR spectra of complex 1

Fig. S2 The IR spectra of complex 2

Fig. S3 The IR spectra of complex $\mathbf{3}$

Fig. S4 The IR spectra of complex $\mathbf{4}$

Fig. S5 The TG curve of the uranyl complex 1

Fig. S6 The TG curve of the uranyl complex **2**

Fig. S7 The TG curve of the uranyl complex **3**

Fig. S8 The TG curve of the uranyl complex 4

Fig. S9 The experimental PXRD(a) and simulation PXRD(b) of complex 1

Fig. S10 The experimental PXRD(a) and simulation PXRD(b) of complex ${\bf 2}$

Fig. S11 The experimental PXRD(a) and simulation PXRD(b) of complex 3

Fig. S12 The experimental PXRD(a) and simulation PXRD(b) of complex 4

Fig S13 The solid UV-Vis spectra of the uranyl complex 1

Fig. S14 The solid UV-Vis spectra of the uranyl complex ${\bf 2}$

Fig. S15 The solid UV-Vis spectra of the uranyl complex 3

Fig. S16 The solid UV-Vis spectra of the uranyl complex 4

Fig. S17 Absorption spectra of methylene blue solution during the photodegradation reaction under the irradiation of visible light with the use of complex **2**

Fig. S18 Absorption spectra of methylene blue solution during the photodegradation reaction under the irradiation of UV light with the use of complex **2**

Fig. S19 Self-degradation and photocatalytic decomposition of methylene blue solution with the use of complex 2 under UV and visible light

Fig. S20 Absorption spectra of methylene blue solution during the photodegradation reaction under the irradiation of visible light with the use of complex **3**

Fig. S21 Absorption spectra of methylene blue solution during the photodegradation reaction under the irradiation of UV light with the use of complex **3**

Fig. S22 Self-degradation and photocatalytic decomposition of methylene blue solution with the use of complex **3** under UV and visible light

Fig. S23 Absorption spectra of methylene blue solution during the photodegradation reaction under the irradiation of visible light with the use of complex **4**

Fig. S24 Absorption spectra of methylene blue solution during the photodegradation reaction under the irradiation of UV light with the use of complex **4**

Fig. S25 Self-degradation and photocatalytic decomposition of methylene blue solution with the use of complex 4 under UV and visible light