Facile synthesis of hierarchical hollow MoS₂ nanotubes as anode

material for high-performance lithium-ion batteries

Guangda Li,^{*a*} Xiaoying Zeng,^{*b*} Tiandong Zhang,^{*b*} Wanyong Ma,^{*a*} Wenpeng Li,^{*a*} and Meng Wang,^{**b*}

^a School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan 250353, China. Fax: +86 531 89631070; Tel: +86 531 89631075; E-mail:ligd@qlu.edu.cn
 ^b Hongyunhonghe Technology Center, Tobacco Yunnan Industrial Co., Ltd, Kunming 650202, China.Fax: +86 871 65869555; Tel: +86 871 65869555; E-mail: wangm_chemistry@sina.com

Table S1. Cycling performance and capacity of pure MoS₂ reported in previous works.

Typical materials	Current density	Cycle number	Remaining capacity	Ref.
	(mA g ⁻¹)		$(mAh g^{-1})$	
Nanorods	200	100	776	1
nanosheets	100	60	698	2
nanoparticles	100	30	900	3
Microspheres	100	70	672	4
Nanosheets	100	30	530	5
Nanosheets	1C	50	860	6
Nanospheres	100	30	706	7
Nanosheets	100	20	936	8
Nanowires	100	50	952	9
Nanoparticles	50	50	900	10
Hollow nanotubes	100	100	727	This
				work
Nanoflowers	100	100	520	This
				work

[1] ACS appl. Mater. Interfaces, 2012, 4, 3765.

[2] Chem. Eur. J., 2011, 17, 13142.

[3] Chem. Commun., 2013, 49, 1823.

[4] Nanoscale, 2012, 4, 95.

[5] Dalton Trans., 2013, 42, 2399.
[6] Inorg. Chem., 2013, 52, 9807.
[7] CrystEngComm, 2012, 14, 8323.
[8] CrystEngComm, 2013, 15, 4998.
[9] Adv. Mater., 2013, 25, 1180.
[10] Chem. Mater., 2010, 22, 4522.

Fig. S1. N₂ adsorption-desorption of the (a) MoS₂ nanotubes and (b) nanoflowers.

Fig. S2. TEM images after 100 cycles: (a) MoS₂ nanotubes and (b) MoS₂ nanoflowers.